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Disclaimer

This document was developed by Abt Associates Inc. under technical direction from U.S. EPA’s
Office of Air Quality Planning and Standards.  The analysis and conclusions presented in this report are
those of the authors and should not be interpreted as necessarily reflecting the official views or policies of
the U.S. EPA.  The analysis is useful to derive estimates of air quality, costs, benefits, and/or economic
impacts.  However, the analysis inputs and outputs associated with any emissions source, county, or local
area are subject to significant uncertainties and should not be used to predict attainment status, costs,
benefits, and/or economic impacts at this level of detail.
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1  The emissions changes modeled for these two years are similar to those in the preliminary standards, differing only in the
treatment of smaller engines and the timing of reductions in the sulfur content of nonroad diesel fuel.
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1 Introduction

This Technical Support Document details the models and methods used to estimate the benefits of
the Preliminary Nonroad Landbased Diesel Engine Rule.  For the preliminary control options analyzed
here, it is assumed that implementation will occur in two stages.  First there would be a reduction in sulfur
content of nonroad diesel fuel, then followed by the gradual adoption of engine controls on new vehicles
over several decades.  Based on the projected time paths for emissions reductions, EPA chose to focus
detailed emissions and air quality modeling on two future years, 2020 and 2030, which reflect partial and
close to complete turnover of the fleet of nonroad land-based diesel engines to models meeting the
preliminary control options.1

This analysis presents estimates of the benefits from the preliminary control options occurring in
2020 and 2030.  We used methods generally consistent with the benefits analyses performed for the
recent analysis of the Heavy Duty Engines/Diesel Fuel rulemaking (U.S. EPA, 2000c) and the proposed
Clear Skies Act (U.S. EPA, 2002b).  As described in the Regulatory Impact Assessment (U.S. EPA,
2003), the benefits analysis relies on three major modeling components:

%Calculation of the impact that a set of preliminary fuel and engine standards would have on the
nationwide inventories for NOx, non-methane hydrocarbons (NMHC), SO2, and PM emissions in 2020
and 2030;

%Air quality modeling for 2020 and 2030 to determine changes in ambient concentrations of
ozone and particulate matter, reflecting baseline and post-control emissions inventories.

%A benefits analysis to determine the changes in human health and welfare, both in terms of
physical effects and monetary value, that result from the projected changes in ambient concentrations of
various pollutants for the modeled standards.

This document focuses on the third component, detailing the steps we use to estimate health and
welfare benefits, such as, reductions in premature mortality, visibility improvement, reduction in crop
losses, and reduction in household soiling.  The approaches to each of these benefits estimates can differ
in detail, such as for visibility, as we describe later in this document, but the general approach is as
follows:

%We combined the results of sophisticated photochemical air quality models with air quality
monitoring data, to estimate baseline and post-control ambient concentrations of ozone and PM.

%We calculated the change between baseline and post-control estimates, and then combined this
change with population forecasts, to give the change in population-level exposures due to the
preliminary policy.

%We used the changes in population exposure as an input to concentration-response functions,
which allowed us to estimate the associated change in the incidence of health and welfare effects
for each individual concentration-response (C-R) function.
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%Where multiple C-R functions are available for an endpoint, we pooled the estimated change in
incidence using fixed or random effects pooling methods.

%We then assigned monetary values to the changes in health and welfare effects, taking into
account adjustments to values for growth in real income out to the year of analysis. Finally, we
summed these monetary values to obtain an estimate of the total monetary value of the changes in
emissions.

Exhibit 1-1 summarizes the results of the Base Estimate, and an Alternative Estimate of the
benefits of the control options of the Nonroad Landbased Diesel Engine Rule.  As described in more
detail in this analysis, the difference between the two is that the Alternative Estimate quantifies changes
in premature mortality using time series studies in place of long-term cohort studies, and uses different
valuation methods for mortality and chronic bronchitis risk reductions.

In addition to these quantified and monetized benefits, there are a number of additional categories
that are not currently amenable to quantification or valuation (Exhibit 1-2).  These include reduced effects
on forested ecosystems, yields for fruits, vegetables, and other commercial and non-commercial crops,
and reduced premature aging of the lungs.  Additionally, we have not quantified a number of known or
suspected health effects linked with PM and ozone for which we cannot as yet quantify, or easily value
(e.g., decreased lung functioning).  As a result, both the Base and Alternative monetized benefits
estimates incorporate an underestimation bias in the total benefits attributable to the preliminary control
options.

Exhibit 1-1.  Summary of Estimated Benefits of the Modeled Preliminary Control Option

Estimation Method a Total Benefits b

(Billions 2000$)

2020 2030

Base Estimate c

    Using a 3% discount rate
    Using a 7% discount rate

$52,000
$49,000

$92,000
$87,000

Alternative Estimate d

    Using a 3% discount rate
    Using a 7% discount rate

$11,000
$11,000

$19,000
$20,000

a  Results reflect the use of two different discount rates; a 3% rate which is recommended by EPA’s Guidelines for Preparing
Economic Analyses (US EPA, 2000a), and 7% which is recommended by OMB Circular A-94 (OMB, 1992).
b  Benefits of carbon monoxide and hazardous air pollution emission reductions are not quantified in this analysis and, therefore,
are not presented in this table. The quantifiable benefits are from emission reductions of NOx, NMHC, SO2 and PM  only.  Exhibit
1-2 presents a detailed listing of unquantified health and welfare effects.
c Base Estimate reflects premature mortality based on application of concentration-response function derived from long-term
exposure to PM2.5, valuation using the value of statistical lives saved approach, and a willingness-to-pay approach for valuing
chronic bronchitis incidence.
d Alternative Estimate reflects premature mortality based on application of concentration-response function derived from short-
term exposures to PM2.5, valuation using the value of statistical live years saved approach, assumption of 0.5 life years saved for
each COPD related premature mortality avoided and 5 years for all other causes of death, and a cost-of-illness  approach for
valuing chronic bronchitis incidence.
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Chapter 2 describes the methods used to estimate population-level exposures to changes in
ambient ozone and particulate matter (PM) concentrations and changes in visibility, based on modeled
and monitored air quality inputs.  Chapter 3 describes general issues arising in estimating and valuing
changes in adverse health and welfare effects associated with changes in ozone, PM, and visibility. 
Chapter 4 describes in some detail the methods used for estimating and valuing adverse health effects,
while Chapter 5 describes the methods used for welfare effects: crop damage, visibility, and household
soiling.  The results of these analyses follow in Chapter 6.

This document has eight appendices.  Appendix A presents the physical and monetary benefits
associated with the sensitivity calculations for the Preliminary Nonroad Landbased Diesel Engine Rule. 
Appendix B details the forecasting of population levels.  Appendix C provides statistical summaries of the
forecasted air quality exposure, and maps of the underlying monitor data, modeling data, and resulting
2020 and 2030 population-level ambient exposure estimates.  Appendix D derives the general form of the
concentration-functions (C-R) that we use to estimate the change in adverse health effects.  Appendix E
details the calculation of incidence and prevalence rates for use in the C-R functions.  Appendix F
presents the particulate matter C-R functions used in this analysis, and Appendix G presents the ozone C-
R functions.  Finally, Appendix H presents a discussion of the pooling approaches used in this analysis.
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Exhibit 1-2.  Human Health and Welfare Effects of Pollutants Affected by the Preliminary Nonroad Landbased Diesel Engine Rule

Pollutant/Effect Quantified and Monetized in Base and
Alternative Estimates

Quantified and/or Monetized Effects in
Sensitivity Analyses a

 Unquantified Effects

Ozone/Health Hospital admissions - respiratory 
Emergency room visits for asthma
Minor restricted activity days
School loss days

Chronic Asthma b

Asthma attacks
Cardiovascular emergency room visits
Premature mortality – acute 
exposures b

Acute respiratory symptoms

Increased airway responsiveness to stimuli
Inflammation in the lung
Chronic respiratory damage
Premature aging of the lungs
Acute inflammation and respiratory cell damage
Increased susceptibility to respiratory infection
Non-asthma respiratory emergency room visits

Ozone/Welfare Decreased outdoor worker productivity
Decreased yields for commercial 

crops (selected species)
Decreased Eastern commercial forest 
productivity (selected 
species)

Decreased commercial forest productivity
Decreased yields for fruits, vegetables, and other commercial
and non-commercial crops
Damage to urban ornamental plants
Impacts on recreational demand from damaged forest
aesthetics
Damage to ecosystem functions

PM/Health Premature mortality
Bronchitis - chronic and acute
Hospital admissions - respiratory and 
cardiovascular
Emergency room visits for asthma
Non-fatal heart attacks
Lower and upper respiratory illness
Minor restricted activity days
Work loss days

Premature mortality – short term 
exposures
Asthma attacks (asthmatic population)
Respiratory symptoms (asthmatic 

population)
Infant mortality

Low birth weight
Changes in pulmonary function
Chronic respiratory diseases other than chronic bronchitis
Morphological changes
Altered host defense mechanisms
Cancer
Non-asthma respiratory emergency room visits

PM/Welfare Visibility in California, Southwestern, and
Southeastern Class I areas

Visibility in Northeastern, Northwestern, and
Midwestern Class I areas
Visibility in residential and non-Class I areas
Household soiling

a Note that while no causal mechanism has been identified linking new incidences of chronic asthma to ozone exposure, two epidemiological studies shows a statistical association
between long-term exposure to ozone and incidences of chronic asthma in exercising children and some non-smoking men (McDonnell et al., 1999; McConnell et al., 2002). 
Premature mortality associated with ozone is not separately included in the primary analysis.  It is assumed that the American Cancer Society (ACS)/ Krewski, et al. (2000) C-R
function captures both PM mortality benefits and any mortality benefits due to other air pollutants.
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2 Forecasting Changes in Population-Level Exposure to Ambient
Ozone And Particulate Matter for Use in the Benefits Analysis

We estimated population exposure using the Criteria Air Pollutant Modeling System (CAPMS), a
population-based geographic information system for modeling changes in population exposure and
estimating the associated health and welfare benefits.  To forecast population-level exposure to ambient
ozone and particulate matter, CAPMS uses both air quality modeling and monitoring data files, as well as
demographic data from the Census and population projections.

This chapter describes how we use these different data sources to forecast changes in ambient
levels of ozone and particulate matter (PM) for use in the benefits analysis.  We used two basic
approaches.  Most commonly, we used air quality modeling combined with actual monitoring values to
estimate the exposure of people and crops to air pollution.  This has the advantage of linking the modeling
with actual observations.  We also used modeling results directly, in the case of estimating visibility,
because we do not have readily available monitoring data for visibility.  Estimating population exposure
is somewhat more complicated, so we have focused this chapter on how we combine population forecasts
with modeling results and monitoring data.

CAPMS has grouped individuals into what we refer to as “population grid-cells,” where the grid-
cells typically conform to some type of grid structure used in an air quality model.  For each type of grid,
we calculate the population in each grid-cell by aggregating census block data.  In the next step, CAPMS
estimates the air pollution exposure for each grid-cell, with the assumption that people living within a
particular grid-cell experience the same ambient air pollution levels.

In the first section of this chapter, we provide an overview of how we estimate the population
exposure in each grid-cell.  We discuss how we forecast population levels in each grid-cell, and how we
forecast air pollution levels, by combining air quality modeling results and air quality monitoring data
with an algorithm called Voronoi Neighbor Averaging (VNA).   In the second and third sections, we
detail the exposure calculations for ozone and PM, and provide tables summarizing the estimated changes
in exposure for each.

2.1 Forecasting Population-Level Exposure to Air Pollution with CAPMS

To forecast future population-level exposure to air pollution, CAPMS uses projections of future
air quality and population levels.  These are estimates of what air quality and population modelers predict
will occur in the future.  In addition, CAPMS uses predictions from these same models to “predict” what
air quality and population levels should be currently.  Finally, CAPMS uses the actual measured current
air pollution and population levels from the EPA air monitoring network and the U.S. Census,
respectively.  In this section, we discuss how CAPMS uses the two sets of model values (future-year and
current-year) in combination with the actual current-year measurements. 

CAPMS has a variety of approaches to estimate the exposure to air pollution for the people living
within a given population grid-cell.  Perhaps the simplest approach is to use modeled air quality data
directly, and to assume that the people living within a particular model grid-cell experience the level
estimated by the model.  An alternative approach is to use air pollution monitoring data, where the analyst
may choose the closest monitor data to the center of a grid-cell, or take an average of data from nearby
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monitors.  In a third general approach, the user may combine both modeling and monitoring data to
estimate exposure.  We use this latter approach in the current analysis.

When combining modeling and monitoring data, CAPMS scales or adjusts the monitoring data
with modeling data.  The advantage of modeling data is that they can provide predictions for years in
which monitoring data are not available, as well as to provide predictions in areas of the country for
which monitoring data are not available.

The goal of estimating exposure is to provide the necessary input for concentration-response
functions, so that CAPMS can estimate the impact of air pollution on adverse health effects, as well as
various welfare effects, such as crop losses and household soiling.  Exhibit 2-1 lists the types of metrics
commonly used in concentration-response functions.  

Exhibit 2-1.  Metrics Typically Used in Concentration-Response Functions for Criteria Air
Pollutants

Measurement
Frequency

Metric Name Metric Description

Daily 
(e.g., PM2.5, PM10)

Daily Average Daily average

Annual Average Average of four quarterly averages.  The four quarters are defined as: Jan-Mar,
April-June, Jul-Sep, Oct-Dec.

Annual Median Median of values through out the year.

Hourly 
(e.g., Ozone)

1-hour Daily Max Highest hourly value from 12:00 A.M. through 11:59 P.M.

5-hour Daily Average Average of hourly values from 10:00 A.M. through 2:59 P.M.

8-hour Daily Average Average of hourly values from 9:00 A.M. through 4:59 P.M. a

12-hour Daily Average Average of hourly values from 8:00 A.M. through 7:59 P.M.

24-hour Daily Average Average of hours from 12:00 A.M. through 11:59 P.M.

SUM06 SUM06 index is the sum of the ozone concentrations (measured in ppm) that
exceed 0.06 ppm between 8:00 am and 7:59 pm.

a Note that the 8-hour daily average differs from the maximum 8-hour moving average described in the Federal Register (6 FR /
Vol. 62, No. 138 / Friday, July 18, 1997 / Prepublication).

2.1.1 Woods and Poole County-Level Population Forecasts

In the current analysis, we use more sophisticated projections based on economic forecasting
models developed by Woods and Poole (2001).  The Woods and Poole database contains county level
projections of population by age, sex, and race out to 2025.  Projections in each county are determined
simultaneously with every other county in the U.S. to take into account patterns of economic growth and
migration.  The sum of growth in county level populations is constrained to equal a previously determined
national population growth, based on Bureau of Census estimates (Hollman et al., 2000).  According to
Woods and Poole, linking county level growth projections together and constraining to a national level
total growth avoids potential errors introduced by forecasting each county independently.

Woods and Poole (2001) developed county projections in a four stage process.  First, national
level variables such as income, employment, populations, etc. are forecasted.  Second, employment
projections are made for 172 economic areas defined by the Bureau of Economic Analysis, using an
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"export-base" approach, which relies on linking industrial sector production of non-locally consumed
production items, such as outputs from mining, agriculture, and manufacturing with the national
economy.  The export-base approach requires estimation of demand equations or calculation of historical
growth rates for output and employment by sector.  Third, population is projected for each economic area
based on net migration rates derived from employment opportunities, and following a cohort-component
method based on fertility and mortality in each area.  Fourth, employment and population projections are
repeated for counties, using the economic region totals as bounds.  The age, sex, and race distributions for
each region or county are determined by aging the population by single year of age by sex and race for
each year through 2025 based on historical rates of mortality, fertility, and migration.

The Woods and Poole (2001) projections of county level population are based on historical
population data from 1969-1999, and do not include the 2000 Census results.  Given the availability of
detailed 2000 Census data, we constructed adjusted county level population projections for each future
year using a two stage process.  First, we constructed ratios of the projected Woods and Poole populations
in a future year to the projected Woods and Poole population in 2000 for each future year by age, sex, and
race.  Second, we multiplied the block level 2000 Census population data (GeoLytics Inc., 2002a) by the
appropriate age, sex, and race specific Woods and Poole ratio for the county containing the census block,
for each future year.  This results in a set of future population projections that is consistent with the most
recent detailed census data.  The total U.S. population is projected to increase from 281 million in 2000 to
345 million in 2025, while the percent of the population 18 and under is expected to decrease slightly,
from 27 to 25 percent, and the percent of the population over 65 is expected to increase from 12 percent
to 18 percent.

Since the Woods and Poole (2001) projections only extend through 2025, we used the existing
projections and constant growth factors to provide additional projections.  To calculate populations for
2030, we applied the growth rate from 2024 to 2025 to each year between 2025 and 2030.  This is
described in more detail below.

2.1.2 Population Projections for REMSAD and CAMx Population Grid-Cells

The benefits for this analysis are based on predicted air quality changes for the years 2020 and
2030, so population projections are needed for these years.  The underlying data used to create these 2020
and 2030 population projections are based on: (1) 2000 block data from the U.S. Census (GeoLytics Inc.,
2002a), and (2) county-level population forecasts provided by Woods and Poole (2001).

First, we aggregate the 2000 block data to the level of the air quality modeling data, in order to
have these two key sources of information at the same level of aggregation.  The 2000 block data are the
most disaggregated data provided by the Census Bureau, and typically cover a much smaller geographic
area than the air quality models.  In the current analysis, we use the Regulatory Model System for
Aerosols and Deposition (REMSAD) and Comprehensive Air Quality Model with Extensions (CAMx)
models, which have an average grid size of about 36 by 36 kilometers and 12 by 12 kilometers,
respectively.  After the aggregation, we have two sets of population grid-cells with year 2000 population
data, one matching REMSAD and the other matching CAMx.

Second, we scale population grid-cells with the ratio of the matching county-level populations for
the future year of interest and the base-year 2000.  In the simplest case, where one is forecasting a single
population variable, say, children ages 4 to 9 in the year 2020, CAPMS calculates:
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where the gth population grid-cell is wholly located within a given county.

In the case, where the gth grid-cell includes more than one county in its boundary, the situation is
somewhat more complicated.  CAPMS first estimates the fraction of individuals in a given age group
(e.g., ages 4 to 9) that reside in the part of each county within the gth grid-cell.  CAPMS calculates this
fraction by simply dividing the all-age population of a given county within the gth grid-cell by the total
population in the gth grid-cell:

We multiply this fraction with the number of individuals ages 4 to 9 in the year 2000, to give an
estimate of the number of individuals ages 4 to 9 that reside in the fraction of the county within the gth

grid-cell in the year 2000:

To then forecast the population in 2020, we scale the 2000 estimate with the ratio of the county projection
for 2020 to the county projection for 2000:

Combining all these steps for “c” counties within the gth grid-cell, we forecast the population of persons
ages 4 to 9 in the year 2020 as follows:

In the case where there are multiple age groups and multiple counties, CAPMS first calculates the
forecasted population level for individual age groups, and then combines the forecasted age groups.  In
calculating the number of children ages 4 to 12, CAPMS calculates:
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( )age age age age4 9 2030 4 9 2025 4 9 2025 4 9 20245− − − −= + ⋅ −, , , , .

The Woods and Poole county-level forecasts extend to 2025.  To estimate population levels in
2030, CAPMS linearly extrapolates from the final two years of data.  For example, to forecast population
in 2030, CAPMS calculates:

Appendix B provides more details on the underlying data and the steps used to calculate
population forecasts.

2.1.3 Voronoi Neighbor Averaging (VNA)

Given a population estimate at each grid-cell, we then need to estimate the change in population
exposure to PM and ozone.  The approach we use to estimate exposure is based on the Voronoi Neighbor
Averaging (VNA) algorithm, and a scaling of air quality monitor data with air quality modeling data.

The VNA algorithm works at every population grid-cell.  It first identifies the set of air quality
monitors that best “surround” the center of the population grid-cell, and given the best set of monitors, it
scales the monitor data with modeling data, to generate air quality forecasts.  Thus, rather than use
modeling data directly or “absolutely,” it uses modeling data in a relative sense to scale actual monitor
levels.  This has the advantage of linking model results with observed air pollution levels.

We use this approach to estimate population exposure to both ozone and PM2.5.  Note that in the
case of air pollution metrics calculated on a daily basis, such as the one-hour maximum and the 24-hour
average, it is often the case that there are missing days of data, because air quality monitors often miss a
number of observations through out the year.  To account for these missing days, CAPMS represents the
distribution of air quality levels with a discrete number of points or “bins,” where each bin represents a
certain range of the distribution, with the underlying assumption that missing days have the same
distribution as the available data.  The number of bins equals the number of days analyzed, so that for
ozone we use 153 bins (representing the summer ozone season), and for PM we use 365 bins.  However,
note that for annual metrics, such as the annual average, there is only a single value, so there is no need
for bins.

As described below, there are three different ways to scale the monitoring data – (1) temporal
scaling, (2) spatial scaling, and (3) temporal and spatial scaling.  For the present analysis, we used VNA
with both temporal and spatial scaling.  To explain our approach, we start with an example describing
VNA, and then we turn to each of the scaling approaches.

Numerical Example of VNA

The first step in VNA is to identify the set of nearest monitors for each of the population grid
cells in the modeling domain.  The figure below presents nine population grid-cells and three monitors,
with the focus on identifying the set of nearest neighbors to grid-cell “E.”
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#

# = Center Grid-Cell “E”

* = Air Pollution Monitor

*

*
*

*

In particular, CAPMS identifies the nearest monitors, or “neighbors,” by drawing a polygon, or
“Voronoi” cell, around the center of each CAPMS grid cell.  The polygons have the special property that 
the boundaries are the same distance from the two closest points.

We then choose those monitors that share a boundary with the center of grid-cell “E.”  These are 
the nearest neighbors, we use these monitors to estimate the air pollution level for this grid-cell.
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1995   60 ppb
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1995   90 ppb
15 miles
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1995   100 ppb
20 miles

To estimate the air pollution level in each grid-cell, CAPMS calculates the annual and the binned
daily metrics for each of the neighboring monitors, and then calculates an inverse-distance weighted
average of the metrics.  The further the monitor is from the CAPMS grid-cell, the smaller the weight.
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The weight for the monitor 10 miles from the center of grid-cell E is calculated as follows:

The weights for the other monitors would be calculated in a similar fashion.  CAPMS would then
calculate an inverse-distance weighted average for 1995 air pollution levels in grid-cell E as follows:

Forecast 1995 = 0.35*80 ppb + 0.24*90 ppb+ 0.24*60 ppb + 0.18*100 ppb = 81.2 ppb .

Numerical Example of VNA with Temporal Scaling

In combining VNA with temporal scaling, CAPMS temporally scales all of the neighboring
monitors, calculates the metrics of interest, and then calculates an inverse distance-weighted average of
the metrics.  Consider the example in the figure below.  

To forecast air pollution levels for 2030, CAPMS would multiply the 1995 monitor value by the
ratio of the 2030 model value to the 1995 model value:
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Numerical Example of VNA with Spatial Scaling

CAPMS can also combine VNA with spatial scaling.  For each of the neighbor monitors, CAPMS
multiplies the monitoring data with the ratio of the base-year modeling data for the destination grid-cell to
the base-year modeling data for grid-cell containing the monitor.  The spatial scaling occurs in the same
fashion as with temporal scaling.  In the case of pollutants typically measured hourly, such as ozone,
CAPMS scales the hourly monitor values, calculates the annual and daily metrics of interest, bins the
daily metrics, and then calculates an inverse-distance weighted average of the metrics.  In the case of
pollutants typically measured daily, CAPMS scales the daily values, calculates the annual metrics of
interest, bins the daily metric, and then calculates an inverse-distance weighted average of the metrics.

Consider the example in the figure below.  To forecast air pollution levels for 1995, CAPMS
would multiply the 1995 monitor value by the ratio of the 1995 model value to the 1995 model value:

Numerical Example of VNA with Temporal & Spatial Scaling

Finally, as done in the present analysis, CAPMS can combine temporal and spatial scaling. In this
approach, CAPMS multiplies monitoring data with the ratio of the future-year to base-year modeling
data, where the future-year modeling data are from the destination grid-cell and the base-year modeling
data are from the grid-cell containing the monitor.  Once the hourly and daily monitoring data are scaled, 
CAPMS generates the metrics of interest, bins the daily metrics, and then calculates an inverse-distance
weighted average of the metrics.
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The figure below gives an example of combining temporal and spatial scaling.

2.2 Ozone Exposure Forecasts

To develop baseline and control forecasts for ozone, we used spatial and temporal VNA,
combining air quality modeling data from the Comprehensive Air Quality Model with Extensions
(CAMx) and air quality monitoring data from a nationwide network of monitors.

2.2.1 Ozone Model Data

To estimate ozone air quality in the Eastern and Western U.S., this analysis relies on a
regional-scale version of CAMx, which has a relatively fine grid-cell structure of about 12 kilometers by
12 kilometers.  CAMx is a numerical multi-scale three-dimensional grid photochemical air quality model,
designed to calculate the concentrations of both inert and chemically reactive pollutants by simulating the
physical and chemical processes in the atmosphere that affect ozone formation.  Because it accounts for
spatial and temporal variations as well as differences in the reactivity of emissions, the CAMx is useful
for evaluating the impacts of reductions in emissions of NOx and NMHC from nonroad diesel engines on
U.S. ozone concentrations.



2  The three simulation periods for the eastern U.S. are based on meteorology for June 15-24, July 8-15, and August 10-21, 1995,
and are based on an emission inventory for 1996.  The three simulation periods for the Western U.S. are based on meteorology for
July 8-15 and July 21-31, 1996, and are based on an emission inventory for 1996.
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The base-year for the modeling is determined by the available historical meteorological data –
1995 for the Eastern U.S., and 1996 for the Western U.S.2  And the future-year is determined by the years
of interest for this analysis –  2020 and 2030.  Taking the ratio of future year to base year modeling
values, we create adjustment factors.

The Eastern modeling domain is bounded by longitude -99° to -67° and latitude 26° to 47°, and
the Western modeling domain is bounded by -127° to -99° and latitude 26° to 52°.  This covers most of
the United States (see Exhibit 2-2).  Each grid cell in the two modeling domains is 1/6 of a degree
longitude wide and 1/9 of a degree latitude high.  At the edge of each of the modeling domains, there is a
border of three grid cells with missing data, so some populated areas of the U.S. are not modeled.  The
actual modeled area in the Eastern domain extends from longitude -98.5° to -67.5° and latitude 26.33° to
46.67°, and the Western domain extends from longitude -126.5° to -99.5° and latitude 26.33° to 51.67°.
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Exhibit 2-2.  Eastern and Western Modeling Domains for Ozone Exposure Forecasts



3  The data used in this analysis were downloaded as AMP350 files from the (password-protected) mainframe version of AIRS,
originally available at: epaibm.rtpnc.epa.gov.

4  The Parameter Occurence Code (POC) is used to distinguish between two or more instruments or monitoring techniques
measuring the same parameter at the same site.
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For populated areas outside of the modeling domain, we assume that ozone levels in the control
scenario are identical with those in the baseline scenario.  As a result, we assume that people outside of
the modeling domain will not be affected by the preliminary regulation. Exhibit 2-3 summarizes the
number of people outside the modeling domain.

Exhibit 2-3.  Summary by State of the Number of People Outside the Eastern and Western CAMx
Modeling Domains

State 2020 2030

# of people a % of total # of people % of total

Florida 5,323,490 25.3% 5,900,976 25.0%

Kansas 112,283 3.7% 110,876 3.4%

Louisiana 67,681 4.8% 67,104 4.5%

Michigan 54,039 0.5% 55,096 0.5%

Minnesota 616,073 10.5% 642,214 10.1%

Nebraska 109,463 5.6% 112,767 5.4%

North Dakota 340,889 47.7% 363,403 48.2%

Oklahoma 152,057 3.9% 153,626 3.7%

South Dakota 43,578 5.0% 43,185 4.7%

Texas 3,203,407 11.9% 3,615,301 12.0%

Wisconsin 36,454 0.6% 37,955 0.6%

Continental U.S. 10,059,414 3.1% 11,102,503 3.1%
a The column “# of people” is a count of the number of people outside the CAMx modeling domain.  The column “% of total” is
the percentage of the total population in a given state that is outside the CAMx modeling domain.

2.2.2 Ozone Monitoring Data

Since the monitoring data should match the base-year modeling, we used monitoring data from
1995 for the Eastern domain, and monitoring data from 1996 for the Western domain.3   We dropped any
monitors with a POC code greater than four, and further dropped any monitors that did not have a
sufficient number of valid observation days.4  We defined a valid observation day as one with at least nine
hourly observations between 8:00am and 7:59pm, and we kept only those ozone monitors with 50 percent
or more valid days during the ozone season (defined as May 1 through September 30).  Finally, for those
locations with more than one ozone monitor, we selected the monitor with the lowest POC code (e.g., we
chose POC 1 rather than 2), and dropped any others. This resulted in a set of 961 monitors for use in this
analysis.  Exhibit 2-4 presents the locations of the monitors used in this analysis.
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Exhibit 2-4.  Ozone Monitor Locations



5  The use of more adjustment factors is generally considered desirable because it provides flexibility; however, it can lead to
unreasonably large adjustment factors for lower ozone values, unless a threshold is used.  If the average in any of the ten deciles fell
below ten ppb, then we set the average to ten ppb. 
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2.2.3 Calculating Spatial and Temporal VNA for Ozone

When using spatial and temporal VNA to forecast ozone levels, we first adjusted the ozone
monitor data with the representative model values.  Second, given the adjusted monitor values, we
calculated the metrics of interest at each monitor, and then calculated an inverse-distance weighted
average of the metrics.

To calculate the representative model values, we first sorted the CAMX modeled hourly values
by concentration level for the base-year and the future-year, and then split evenly the ordered hourly
values into the ten rank-ordered deciles.5  We then calculated the average of hourly values in each decile,
and used this average as the representative value for that decile.  This means that the first decile's
representative ozone level equals the average of values within that decile, and so on for the other deciles.  

To prepare the monitor data, we sorted all of the hourly monitor values by concentration level,
and assigned the monitor data to one of ten groups – thus providing the link between the monitor and
model data.  The monitor values in the lowest group were paired with the lowest of the model deciles, and
so on through each of the ten groups.

After preparing the model and monitor data, we used VNA to identify the set of neighbor
monitors for each population grid cell, and then combined the representative model values and the ozone
monitoring data.  In the case of ozone, we calculated the following:

where:
adjusted monitor = predicted hourly ozone level, after adjustment by model data (ppb)
monitor = observed hourly ozone monitor level (ppb)
i = hour identifier
j = model decile group (1 to 10)
k = grid cell identifier for population grid cell
l = grid cell identifier for grid cell containing monitor
base = base-year (Eastern U.S. = 1995; Western U.S. = 1996)
future = future-year (2020, 2030)
CAMX = representative model decile value (ppb)

After adjusting the monitor values to reflect air quality modeling, we calculated for each monitor
the ozone metrics needed to estimate adverse health effects.  Using the neighbors identified for each
population grid cell, we then calculated an inverse distance-weighted average of the metrics from these
neighboring monitors.
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where:
population grid cell = inverse distance-weighted ozone metric at population grid cell (ppb)
adjusted monitor = predicted ozone metric, after adjustment by model data (ppb)
m = monitor identifier
future = future-year (2020, 2030)
weight = inverse-distance weight for monitor

After generating the bins for both the baseline and control scenarios, we take the difference
between these two values at each bin.  We subtract the baseline value in the first bin from the control
value in the first bin, and so on for each of the 153 bins that we created for the daily ozone metrics.  For
each population grid cell, we then get 153 values representing the difference between the baseline and
control, and we use these to estimate the change in adverse effects associated with the implementation of
the policy.  

Exhibit 2-5 summarizes the population-weighted ozone values that we calculated.  Note that the
results show that ozone levels are generally increased in the control scenario in the Western region.  This
occurs because NOx emissions reductions from the preliminary modeled standards result in less “nitrogen-
scavenging” and higher ozone concentrations for certain hours during the year, especially in urban, NOx-
limited areas.
 

Exhibit 2-5.  Population-Weighted Average of Ozone Metrics Used in Concentration-Response
Functions for Criteria Air Pollutants

2020 b 2030 b

Region Metric a Base Case Change % Change Base Case Change % Change

Eastern U.S. 1-Hour Maximum 51.34 -0.67 -1.31% 51.47 -1.16 -2.25%

5-Hour Average 42.77 -0.47 -1.10% 42.90 -0.84 -1.96%

8-Hour Average 42.07 -0.46 -1.08% 42.19 -0.82 -1.93%

12-Hour Average 39.65 -0.40 -1.00 39.75 -0.72 -1.80%

24-Hour Average 30.24 -0.18 -0.60% 30.29 -0.37 -1.23%

Western U.S. 1-Hour Maximum 63.80 0.34 0.54% 64.23 0.38 0.58%

5-Hour Average 53.56 0.45 0.84% 53.89 0.55 1.03%

8-Hour Average 51.96 0.46 0.88% 52.29 0.57 1.10%

12-Hour Average 47.68 0.49 1.02% 47.99 0.63 1.32%

24-Hour Average 35.53 0.47 1.31% 35.74 0.63 1.77%
a These ozone metrics are calculated at the CAPMS grid-cell level for use in health effects estimates based on the results of spatial
and temporal Voronoi Neighbor Averaging.  We calculated the population-weighted average by summing the product of the
projected grid-cell population and the estimated PM concentration over all grid-cells, and then dividing by the total population. 
b The base-case is the population-weighted average over the course of the 153 days in the ozone season (defined as May 1 through
September 30).  The change is defined as the population-weighted average baseline minus the population-weighted average
control.  The percent change is the “Change” divided by the “Base Case,” and then multiplied by 100 to convert the value to a
percentage.
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2.3 PM2.5 Exposure Forecasts

To develop baseline and control forecasts for PM2.5, we used spatial and temporal VNA,
combining air quality modeling data from the Regulatory Model System for Aerosols and Deposition
(REMSAD) and air quality monitoring data from a nationwide network of monitors.

2.3.1 PM2.5 Model Data

The PM2.5 modeling data are based on the Agency’s application of a national-scale version of
REMSAD, which is a three-dimensional grid-based Eulerian air quality model designed to estimate PM
concentrations and deposition over large spatial scales (e.g., continental U.S.).  REMSAD is useful for
evaluating the impacts of the preliminary rule on U.S. PM concentrations, because it can assess the
preliminary rule's effect on both primary and secondary PM, as well as account for spatial and temporal
variations in emissions, and the reactivity of emissions.

The base-year for the REMSAD modeling is 1996, and the modeling for future-years is based on
emission forecasts for  2020 and 2030.  As with the CAMx modeling, we use REMSAD in a relative
sense, by taking the ratio of future-year to base-year model values and scaling monitor values.

The REMSAD modeling domain completely encompasses the contiguous 48 States (see Exhibit
2-6).  The domain extends from 126 degrees west longitude to 66 degrees west longitude, and from 24
degrees north latitude to 52 degrees north latitude.  The model contains horizontal grid-cells across the
model domain of roughly 36 km by 36 km.  There are 8 vertical layers of atmospheric conditions with the
top of the modeling domain at roughly 16,000 meters.  The 36 by 36 km horizontal grid results in a 120
by 84 grid (or 10,080 grid-cells) for each vertical layer. 



6  Text files with AMP500 and AMP501 files received from Virginia Ambrose (ambrose.virginia@epa.gov).
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Exhibit 2-6.  REMSAD Modeling Domain for PM2.5 Exposure Forecasts

2.3.2 PM2.5 Monitoring Data

Since PM2.5 monitoring data are not widely available for 1996, the base-year of the modeling, we
used monitoring data from 1999 through 2001.  We combined two types of monitoring data sets that we
received from EPA6 – AMP500 and AMP501. The AMP500 contains a description of each monitor, such
as the latitude and longitude, and the AMP501 has the actual PM2.5 observations. We started with data
from 1999, 2000 and 2001, and then trimmed it in the following fashion.  We only used data from federal
reference monitors, which are denoted by “method” codes 116, 117, 118, 119, 120, and 123; we only
used data from “local” PM2.5 (designated by pollutant code 88101); we included only those monitors
located in the continental U.S., between latitude 24 to 55 and longitude -126 to -66; and we dropped
monitors with a POC code greater than four.

The data we received from EPA were either averaged every hour, or every 24 hours.  We are
interested in 24-hour averages, since the concentration-response functions used in the current analysis are
based on 24-hour (and annual averages), but never on hourly averages.  In calculating 24-hour averages
from the hourly observations, we kept the observations for any given day, only if there are 18 or more
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over the course of the day.  For days with 18 hourly values, we averaged the available observations, even
the occasional negative observation. (In no cases are the resulting 24-hour averages ever negative.)  

For each of the three years of monitoring, we divided the data into four seasons: Winter (January
1 - March 31), Spring (April 1 - June 30), Summer (July 1 - September 30), and Fall (October 1 -
December 31).  If a season has fewer than 11 observations, we dropped the values for that season. 
Alternatively, if a season has 11 or more observations, we create a binned data set for that season – that is,
we use the available observations for the season, and assume that any missing values have the same
distribution as the available ones.  

Specifically, to create a binned data set, we sort the available observations in each season from
low to high, and assign a percentage weight to each based on its relative frequency.  For example, if there
are 30 available observations in the Winter (which has 90 days in a non-leap year), and three of them
have a value of 17 :g/m3, then we assume that 10 percent (= 3/30) of Winter-time days have a value of 17
:g/m3.  So, when developing 90 days of data for Winter, we would assign nine of the days (= 0.10*90) a
value of 17 :g/m3.  Similarly, if six of the 30 available observations have a value of 23 :g/m3, then we
would assign 20 percent (= 6/30), or 18 of the 90 Winter days, a value of 23 :g/m3.

In this fashion, to the extent possible, we created complete data sets for winter, spring, summer
and fall, for each monitor for each year.  The completed seasons had 90, 91, 92, and 92 binned values,
respectively, and together comprised 365 daily binned values over the course of a year.  We then
calculated an average over the three years of data.  If, say, Winter values were available for 1999, 2000
and 2001, then we averaged the binned values.  If, say, Winter values were available for only one year,
then we used that single year of data. If a given monitor did not have a valid season (i.e., in all three
years, there were fewer than 11 observations) then we dropped the monitor. Finally, in those cases where
there is more than one valid monitor at a given location, we selected the monitor with the lowest POC
code (e.g., we chose POC 1 rather than 2), and dropped any others.

These various steps resulted in a set of 1073 PM2.5 monitors for use in this analysis.  Exhibit 2-7
presents the locations of the monitors used in this analysis.
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Exhibit 2-7.  PM2.5 Monitor Locations



7  Unlike the CAMx modeling data, where we used a minimum value of 10 ppb because of some unusually large adjustment factors,
we did not assume any minimum level for the REMSAD particulate matter modeling data, as we did not see any results that caused
concern.

Abt Associates Inc. April 20032-21

population grid cell adjusted monitor weightfuture m future
m

n

m= ⋅ ⋅
=
∑ ,

1

adjusted monitor monitor
REMSAD
REMSADi j future i j base

j k future

j l base
, , , ,

, ,

, ,
= ⋅

2.3.3 Calculating Spatial and Temporal VNA for PM2.5

When using spatial and temporal VNA to forecast PM2.5 levels, we first adjusted the PM2.5
monitor data with the representative model values.  Second, given the adjusted monitor values, we
calculated the metrics of interest at each monitor, and then calculated an inverse-distance weighted
average of the metrics.

To calculate the representative model values, we first divided the REMSAD modeled daily values
by the four seasons of interest, sorted each season by concentration level, and then split evenly the
ordered daily values into the five rank-ordered quintiles.7  For each season, we then calculated the average
of daily values in each quintile, and used this average as the representative value for that season's quintile. 
This means that the first quintiles's representative PM2.5 level equals the average of the values within that
season's quintile, and so on for the other quintiles.  

To prepare the monitor data, we divided the monitor data into the four seasons, we then sorted all
of the daily monitor values by concentration level for each season, and then assigned the monitor data to
one of twenty season/quintile groups – thus providing the link between the monitor and model data.  The
monitor values in the lowest group for a given season, were paired with the lowest of the model quintiles
for that season, and so on through each of the twenty season/quintile groups.

After preparing the model and monitor data, we used VNA to identify the set of neighbor
monitors for each population grid cell, and then combined the representative model values and the PM2.5
monitoring data.  In the case of PM2.5, we calculated the following:

where:
adjusted monitor = predicted daily PM2.5 level, after adjustment by model data (:g/m3)
monitor = observed daily PM2.5 monitor level (:g/m3)
i = day identifier
j = model season/quintile group (1 to 20)
k = grid cell identifier for population grid cell
l = grid cell identifier for grid cell containing monitor
base = base-year (1996)
future = future-year (2020, 2030)
REMSAD = representative model season/quintile value (:g/m3)

After adjusting the monitor values to reflect air quality modeling, we calculated for each monitor
the PM2.5 metrics needed to estimate adverse health effects.  Using the neighbors identified for each
population grid cell, we then calculated an inverse distance-weighted average of the metrics from these
neighboring monitors.
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where:
population grid cell = inverse distance-weighted PM2.5 metric at population grid cell (:g/m3)
adjusted monitor = predicted PM2.5 metric, after adjustment by model data (:g/m3)
m = monitor identifier
future = future-year (2020, 2030)
weight = inverse-distance weight for monitor

After generating the bins for both the baseline and control scenarios, we take the difference
between these two values at each bin.  We subtract the baseline value in the first bin from the control
value in the first bin, and so on for each of the 365 bins that we created for the daily PM2.5 average.  For
each population grid cell, we then get 365 values representing the difference between the baseline and
control, and we use these to estimate the change in adverse effects associated with the implementation of
the policy.  Exhibits 2-8 and 2-9 summarize the forecasted PM2.5 values that we calculated.

Exhibit 2-8.  Summary of Forecasted PM2.5 Levels Due to Nonroad Engine/Diesel Fuel Standards:
2020 and 2030

Summary of Forecasted of Annual
Mean PM2.5 Levels a

2020 b 2030 b

Base Case Change % Change Base Case Change % Change

Average 8.10 -0.20 -2.5% 8.37 -0.28 -3.4%

Median 7.50 -0.18 -2.7% 7.71 -0.22 -2.8%

Population-Weighted Average 12.42 -0.42 -3.3% 13.07 -0.59 -4.5%
a All of the statistics are for the annual mean of the REMSAD grid-cells, and are based on the results of spatial and temporal
Voronoi Neighbor Averaging.  The annual mean is based on average of 365 daily averages.  The “average annual mean” is the
simple average of all REMSAD grid-cell mean.  The “median annual mean” is the median of the REMSAD grid-cell means.  We
calculate the “population-weighted average annual mean” by summing the product of the projected grid-cell population and the
estimated PM concentration over all grid-cells, and then dividing by the total population.
b The change is defined as the control-case value minus the base-case value.  The percent change is the “Change” divided by the
“Base Case,” and then multiplied by 100 to convert the value to a percentage.
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Exhibit 2-9.  Distribution of Forecasted PM2.5 Air Quality Improvements Over Population Due to
Nonroad Engine/Diesel Fuel Standards: 2020 and 2030

Change in Annual Mean PM2.5
Concentrations (µg/m3) a 

2020 Population 2030 Population

Number (millions) Percent (%) Number (millions) Percent (%)

0 > ) PM2.5 Conc # 0.25 65.11 19.8% 28.60 8.0%

0.25 > ) PM2.5 Conc  # 0.5 184.52 56.0% 147.09 41.3%

0.5 > ) PM2.5 Conc  # 0.75 56.66 17.2% 107.47 30.2%

0.75 > ) PM2.5 Conc  # 1.0 14.60 4.4% 38.50 10.8%

1.0 > ) PM2.5 Conc  # 1.25 5.29 1.6% 8.82 2.5%

1.25 > ) PM2.5 Conc  # 1.5 3.51 1.1% 15.52 4.4%

1.5 > ) PM2.5 Conc  # 1.75 0 0.0% 5.70 1.6%

) PM2.5 Conc > 1.75 0 0.0% 4.19 1.2%
a  The change is defined as the control case value minus the base case value.
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3 General Issues in Estimating Health and Welfare Benefits

Changes in ozone, PM, and visibility levels result in changes in a number of health and welfare
effects, or “endpoints,” that society values.  This chapter discusses key issues in the estimation of adverse
health effects and in the valuation of health and welfare benefits.  The first section discusses the
development of C-R functions, based on the results from epidemiological studies.  The second section
briefly describes how CAPMS calculates adverse health effects, and the third section discusses some
general issues that arise with C-R functions.  The fourth describes general issues in valuing health and
welfare changes, and the final section discusses how uncertainty is characterized in this analysis.

3.1 Choosing Epidemiological Studies and Developing Concentration-
Response Functions

This section reviews the steps we performed in selecting and developing C-R functions.  The first
section of this appendix describes how we chose studies from the epidemiological literature for use in the
present analysis.  In any given study, there are often a large number of estimated relationships between air
pollution and adverse health effects, because the estimated relationship can depend on the number and
types of pollutants included in the model, among other reasons.  The second section describes how we
chose the specific estimated relationships, or models, from among the potentially large number available
in any given study.  In the third section, we briefly discuss how we convert the estimated model into C-R
functions, which then allow us to quantify the change in adverse health effects due to a change in air
pollution exposure.  Appendix B provides more details on the derivation of C-R functions.

3.1.1 Study Selection

We relied on an up-to-date assessment of the published scientific literature to ascertain the
relationship between particulate matter and ozone exposure and adverse human health effects.  We
evaluated studies using a variety of selection criteria, including: its location and design, the characteristics
of the study population, and whether the study was peer-reviewed (Exhibit 3-1).

In selecting studies for use in this analysis, priority was given to studies that focused on PM2.5 and
ozone, given that the emissions reductions from nonroad sources are likely to result primarily in reduced
ambient PM2.5 and ozone levels.  For a given health effect, if sufficient PM2.5 studies were available, we
selected them rather than PM10 studies in the base analysis.  In addition, results from several recent studies
allowed for the inclusion of new health effects, such as myocardial infarction for PM2.5 and school loss
days for ozone.

While a broad range of serious health effects have been associated with exposure to elevated
ozone and PM levels, we include only a subset of health effects in this quantified benefit analysis.  Health
effects are excluded from this analysis for three reasons: (i) the possibility of double counting (such as
hospital admissions for specific respiratory diseases); (ii) uncertainties in applying effect relationships
based on clinical studies to the affected population; or (iii) a lack of an established C-R relationship.

A more detailed description of the studies and health effects included in this analysis are
presented in Appendices F and G.
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Exhibit 3-1.  Summary of Considerations Used in Selecting C-R Functions

Consideration Comments

Peer reviewed
research

Peer reviewed research is preferred to research that has not undergone the peer review process.

Study type Among studies that consider chronic exposure (e.g., over a year or longer) prospective cohort studies are
preferred over cross-sectional studies because they control for important individual-level confounding
variables that cannot be controlled for in cross-sectional studies. 

Study period Studies examining a relatively longer period of time (and therefore having more data) are preferred,
because they have greater statistical power to detect effects.  More recent studies are also preferred because
of possible changes in pollution mixes, medical care, and life style over time.  However, when there are
only a few studies available, studies from all years will be included.

Population attributes The most technically appropriate measures of benefits would be based on C-R functions that cover the
entire sensitive population, but allow for heterogeneity across age or other relevant demographic factors.  In
the absence of C-R functions specific to age, sex, preexisting condition status, or other relevant factors, it
may be appropriate to select C-R functions that cover the broadest population, to match with the desired
outcome of the analysis, which is total national-level health impacts.

Study size Studies examining a relatively large sample are preferred because they generally have more power to detect
small magnitude effects.  A large sample can be obtained in several ways, either through a large population,
or through repeated observations on a smaller population, i.e. through a symptom diary recorded for a panel
of asthmatic children.

Study location U.S. studies are more desirable than non-U.S. studies because of potential differences in pollution
characteristics, exposure patterns, medical care system, population behavior and life style.

Pollutants included
in model

When modeling the effects of ozone and PM (or other pollutant combinations) jointly, it is important to use
properly specified C-R functions that include both pollutants.  Use of single pollutant models in cases
where both pollutants are expected to affect a health outcome can lead to double-counting when pollutants
are correlated.

Measure of PM For this analysis, C-R functions based on PM2.5 are preferred to PM10 because reductions in emissions from
diesel engines are expected to reduce fine particles and not have much impact on coarse particles.  Where
PM2.5 functions are not available, PM10 functions are used as surrogates, recognizing that there will be
potential downward (upward) biases if the fine fraction of PM10 is more (less) toxic than the coarse fraction. 

Economically
valuable health
effects

Some health effects, such as forced expiratory volume and other technical measurements of lung function,
are difficult to value in monetary terms.  These health effects are not quantified in this analysis.

Non-overlapping
endpoints

Although the benefits associated with each individual health endpoint may be analyzed separately, care
must be exercised in selecting health endpoints to include in the overall benefits analysis because of the
possibility of double counting of benefits.  Including emergency room visits in a benefits analysis that
already considers hospital admissions, for example, will result in double counting of some benefits if the
category "hospital admissions" includes emergency room visits.

3.1.2 Model Selection

For any given study selected for use in this analysis, there are often multiple models quantifying
the relationship between air pollution exposure and adverse health.  For each model, we needed to
identify the specific models that we would use to develop C-R functions.
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Single Pollutant versus Multipollutant Models

Many of the epidemiological studies present results both for the case where only one pollutant is
entered into the health effects model, or single-pollutant models, and where two or more pollutants are
entered into the health effects model, or multi-pollutant models.  When attempting to quantify the impact
of a single pollutant, such as PM2.5, on adverse health effects, the use of single-pollutant models may
result in biased estimates.  For example, to the extent that any of the co-pollutants present in the ambient
air may have contributed to the health effects attributed to PM2.5 in single pollutant models, risks
attributed to PM2.5 might be overestimated where C-R functions are based on single-pollutant models.  

In multi-pollutant models, it may be difficult to sort out which pollutants are exerting an
independent effect when pollutants in a given location are highly correlated.  As discussed in the 2002
draft PM CD (U.S. EPA, 2002a), inclusion of pollutants that are highly correlated with one another can
lead to misleading conclusions in identifying a specific causal pollutant.  When collinearity exists, multi-
pollutant models would be expected to produce unstable and statistically insignificant effects estimates
for both PM and the co-pollutants (U.S. EPA, 2002a, p.9-130).  

Single- and multi-pollutant models each have potential advantages and disadvantages, with
neither type clearly preferable over the other, however, the regulatory focus of this analysis is on PM and
ozone.  For regulatory analyses which consider two pollutants together, adding incidence changes for a
given health endpoint, based on a single-pollutant PM model, to the incidence changes based on a single-
pollutant ozone model could result in an overestimate of incidence change, if both have an effect on the
health endpoint and there is some collinearity between the two pollutants.  

As a result, our first choice for this analysis is to use multi-pollutant models with both PM and
ozone, rather than single-pollutant models and multi-pollutant models with other pollutants.  If multi-
pollutant models with both PM and ozone were not available, then models with other co-pollutants were
preferred to single-pollutant models.  In the absence of multi-pollutant models from a given study, single
pollutant models were selected for use in the analysis.

Model Selection Criteria

In many epidemiological studies of air pollution and health, researchers estimate and present
numerous single pollutant and multi-pollutant models for the same pollutant and health endpoint.  These
models may differ from each other in a number of characteristics, including: the functional form of the
model, the covariates included in the model, the pollutant exposure metric, the lag structure, and the study
population.  

For the purposes of estimating health benefits associated with pollutant changes, it is neither
realistic nor advantageous to include every model presented in each study.  However, it is important that a
relatively objective process be used to select among models.  Described below are the criteria that were
used as guidance in the selection of a particular model from among several models presented in a study. 
It is not possible in all cases to select a model using a completely objective and mechanical process.  In
many cases, professional judgement and an understanding of the study context are necessary as well to
select the most appropriate models.  Exhibit 3-2 summarizes the selection criteria that we used.
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Exhibit 3-2.  Description of Selection Criteria

Selection Criteria Description

Goodness-of-fit statistics If an appropriate measure for model selection is reported for each of several models in a study,
then this measure may be used as the basis on which to select a model.

Best captures distributed
lag

Select the model that appears to best capture a distributed lag effect:  If multiple single-lag models
and/or moving average models are specified, select the model with the largest effect estimate, all
else equal.

Best set of control
variables

Select the model which includes temporal variables (i.e. season, weather patterns, day of the
week) and other known non-pollutant confounders, all else equal.  Select the model which uses
the most sophisticated methods of capturing the relationship between these variables and the
dependent variable (e.g., affords the most flexibility in fitting possible nonlinear trends).

Useful for health effects
modeling

The model must be in a form that is useful for health effects modeling (e.g., the pollutant variable
should be a continuous variable rather than a categorical variable).

Biologically plausible Select only those models that are biologically plausible.

Sample size Select the model with the larger sample size, all else equal.

  

Goodness-of-Fit Statistics

Model specification (or mis-specification) is one of the most important issues confronting
researchers – and those who apply the results of their research.  The goal is to select the “right model” –
i.e., the model that has included all the variables that should be in the model (i.e., are relevant) and has
not included any variables that should not be in the model (i.e., that are irrelevant).  However, is not often
known which model is the “right model.”  There are several ways of selecting one model from among
several.  One way is to use a goodness of fit measure, which provides a measure of how well a model fits
the data.  There are a variety of goodness of fit measures available, but use of such measures can at times
be misleading.  In order to select models based on a goodness of fit criterion, it is important to understand
the meaning behind typical goodness of fit measures.  

One of the most common goodness of fit measures is R2, often called the “explained variance” or
the “coefficient of multiple determination.”  R2 measures the proportion of the total variability in the
dependent variable (e.g., the daily incidence of a health effect) that is explained by the linear regression. 
The closer R2 is to 1.0, the greater this proportion.  The problem with R2, however, is that it can be
increased simply by adding more independent variables to the model, regardless of the variables’
relevance to predicting the dependent variable.  In the extreme, if there are N observations in the dataset,
a model with N explanatory variables will result in an R2 of 1, but it would be a meaningless model with
respect to predictive value.  If several models are reported in a study, all with the same number of
variables, this drawback is avoided.  In that case, if R2 is reported for each estimated model, this may be a
reasonable measure of the relative goodness of fit of the models and an acceptable way to select a single
model from among several.  

In many cases, however, R2 is a problematic measure of goodness of fit, for the reason stated
above.  In view of the drawback of R2, several alternative measures of goodness of fit have been
developed which essentially penalize the model for additional variables – or, equivalently, give “points”
for parsimony.  Two of the more commonly used of these measures are the adjusted R2 and Akaike’s
Information Criterion (AIC).  The selection criterion, using the adjusted R2, is to select the model with the
largest adjusted R2;  the selection criterion, using the AIC, is to select the model with the smallest AIC. 
Both of these measures offset the incremental “fit” gained by including variables in the model with a



8   If F-statistics are both (or all) greater than the critical value, it is less clear that a comparison of these F-statistics would be a good
way to select a model.  
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“penalty” for increasing the number of explanatory (independent) variables.  It should be noted, however,
that several such measures have been suggested, and there is no clear way to determine which of these
measures to select the “best” model is itself the “best” measure.  Nevertheless, if a measure of goodness
of fit (particularly, one of the measures that consider parsimony) is presented in a paper, this provides a
reasonable means by which to select one model out of several. 

Often, however, no goodness of fit measure is presented in a paper.  A common approach for
deciding the appropriate set of independent variables to be included in a model is to include a variable if
its t-value exceeds the critical value for testing whether the variable’s coefficient is significantly different
from zero at the 5 percent level.  Several variables, or an entire model, can similarly be tested with an F-
test. (If all the coefficients are being tested jointly, the null hypothesis being tested is that all the
coefficients are zero, in which case the model has no more predictive value than the mean of the
dependent variable.)  In some cases, a comparison of F-statistics (or their corresponding p-values) can be
used to select from among several models – in particular, if the F-test for one model suggests that one
cannot reject the null hypothesis at the five percent level whereas the F-test for another model suggests
that one should reject the null hypothesis.8 

For example, Stieb et al. (1996) estimated the association between ozone and ER visit rates using
both a linear model (in which ER visit rate was a linear function of ozone level) and a quadratic model (in
which ER visit rate was a linear function of ozone level squared).  No goodness of fit measure was
reported in the paper.  However, model p-values were reported.  The linear model was not statistically
significant at the 5% level, whereas the quadratic model was highly significant.  This suggests that the
linear model does no better in predicting ER visits than the mean of ER visits, whereas the quadratic
model has predictive value.  The authors of the study themselves noted that “only ozone appeared to have
a nonlinear relationship with visit rates” (Stieb et al., 1996, p. 1356) and that “quadratic, linear-quadratic,
and indicator models consistently fit the data better than the linear model ...” (Stieb et al., 1996, p. 1358). 
Based on the relative model p-values presented in the paper, corroborated by the authors’ observations,
the quadratic model was selected for inclusion in this analysis.

Best Captures a Distributed Lag Effect. 

The question of lags and the problems of correctly specifying the lag structure in a model has
been discussed extensively (U.S. EPA, 2002a, Section 8.4.4).  In many time-series studies, after the basic
model is fit (before considering the pollutant of interest), several different lags are typically fit in separate
single-lag models and the most significant lag is chosen.  The 2002 draft PM CD notes that “while this
practice may bias the chance of finding a significant association, without a firm biological reason to
establish a fixed pre-determined lag, it appears reasonable” (U.S. EPA, 2002a, p. 8-237).  

There is recent evidence (Schwartz, 2000b) that the relationship between PM and health effects
may best be described by a distributed lag (i.e., the incidence of the health effect on day n is influenced
by PM concentrations on day n, day n-1, day n-2 and so on).  If this is the case, a model that includes only
a single lag (e.g., a 0-day lag or a 1-day lag) is likely to understate the total impact of PM.  The 2002 draft
PM CD makes this point, noting that “if one chooses the most significant single lag day only, and if more
than one lag day shows positive (significant or otherwise) associations with mortality, then reporting a
RR [relative risk] for only one lag would also underestimate the pollution effects” (U.S. EPA, 2002a, p.
8-241).  The same may hold true for other pollutants that have been associated with various health effects.
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Several studies report similar models with different lag structures.  For example,  Moolgavkar
(2000b) studied the relationship between air pollution and respiratory hospital admissions in three U.S.
metropolitan areas.  The author reports models with PM lagged from zero to five days. Since the lagging
of PM was the only difference in the models and the relationship is probably best described using a
distributed lag model, any of single-lag effect estimates are likely to underestimate the full effect. 
Therefore, we selected the model with the largest effect estimate.

Most Sophisticated Model That Includes Temporal Variables

A correctly specified model for evaluating air pollution and health would include all variables
that are relevant independent predictors of the health outcome and none that are not.  If there are variables
that are known from prior literature to be associated with both air pollution and the health endpoint (e.g.
temperature or season), then omitting these variables is likely to result in biased effect estimates – the C-R
function would attribute too much or too little of the health effect to the pollutant.  Since temporal and
weather patterns are known to confound the relationship between air pollution and health, we selected the
models which, all else equal, adjusted for these factors over those that did not. 

   
Useful for Health Effects Modeling

In order for a model to be selected for use, the pollutant must be a continuous variable, so that
changes in incidence of the health effect can be predicted to result from any change in pollutant
concentration.  Those models which examine the effects of being above or below a pollutant threshold or
those that look at changes in health associated with categories of pollutant levels are not useful for this
purpose.   

For example, in a study of the association between air pollution and emergency room (ER) visits,
Stieb et al. (1996) estimated several different models.  One of these models relates ER visit rates to being
above or below the 95th percentile value of ozone (that is, it essentially estimates an average ER visit rate
for days above the 95th percentile value of ozone and a different average ER visit rate for days below it). 
In another study, Peters et al. (2001) estimated a model using quintiles of PM levels.  None of these
models is appropriate for use in CAPMS.  Instead, we selected models which associate the incidence
(rate) of a health effect with the pollutant concentration.  

Biologically Plausible.

If a model includes a relationship that simply doesn’t make biological sense, it is probably mis-
specified and should not be used for predictive purposes.  It is sometimes not clear, however, what is
biologically plausible and what is not.  For example, Stieb et al. (1996) estimated a linear-quadratic model
– i.e., a model which included both ozone and the square of ozone as independent variables –  in a study
of air pollution and ER visits.  The coefficient of the linear term in this model was negative, while the
coefficient of the quadratic term was positive.  A graph of the model showed a curve which “dips” at low
levels of ozone – i.e. at low ozone levels, increases in ozone are associated with decreases in risk.  Since
ozone is not likely to be beneficial at any levels, this model is not considered to be biologically plausible. 



9  The log-linear form used in the epidemiological literature on PM-related health effects is often referred to as “Poisson regression”
because the underlying dependent variable is a count (e.g., number of deaths), believed to be Poisson distributed.  The model may be
estimated by regression techniques but is often estimated by maximum likelihood techniques.  The form of the model, however, is
still log-linear.
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Sample Size 

Several studies report the results of an analysis using different population subsets.  All else equal,
the model based on the larger population, which results in more statistical power, is selected.  For
example, Pope et al. (1991) studied the association between PM and respiratory health in children.  The
authors report results for a school-based sample of 34 children and a patient-based sample of 21 residents. 
Since there are many more observations in the school-based sample (3,096 versus 1,912) and no other
significant differences between the models, the model estimated from the school-based sample is used.

Chen et al. (2000) examined the association between air pollution and school absenteeism.  The
authors reported results by elementary school grade and for all grades combined.  With all else equal in
the models, the C-R function with the larger number of observations was selected (i.e., the model based
on all grades combined). 

As discussed above, these criteria are used as general guidance when it is not obvious which
model should be chosen from a particular study.  The purpose of this process is to provide as objective a
protocol as possible for selecting C-R functions.  However, model selection can never be a completely
mechanical and objective process because it often depends on the specific context of the particular study. 
In some cases, consideration of several of the aforementioned criteria must be weighed before selecting
C-R functions for use in the analysis.  The C-R functions selected for use in this analysis are described
below with study summaries and a description of which model was selected, when multiple models are
available.

3.1.3 Basic Concentration-Response Model

The methods discussed in this sub-section apply to the estimation of  both ozone-related and PM-
related changes in adverse health effects.  For expository simplicity, the discussion focuses primarily on
PM-related changes.  The methods, however, are equally applicable to ozone-related changes in effects. 
Similarly, while several health endpoints have been associated with ozone and PM, the discussion below
refers only to a generic “health endpoint,” denoted as y.

Different epidemiological studies may have estimated the relationship between PM and a
particular health endpoint in different locations.  The C-R functions estimated by these different studies
may differ from each other in several ways.  They may have different functional forms; they may have
measured PM concentrations in different ways; they may have characterized the health endpoint, y, in
slightly different ways; or they may have considered different types of populations.  For example, some
studies of the relationship between ambient PM concentrations and mortality have excluded accidental
deaths from their mortality counts; others have included all deaths.  One study may have measured daily
(24-hour) average PM concentrations while another study may have used two-day averages.  Some
studies have assumed that the relationship between y and PM is best described by a linear form (i.e., the
relationship between y and PM is estimated by a linear regression in which y is the dependent variable
and PM is one of several independent variables).  Other studies have assumed that the relationship is best
described by a log-linear form (i.e., the relationship between the natural logarithm of y and PM is
estimated by a linear regression).9  Finally, one study may have considered changes in the health endpoint



10   The International Classification Codes are described at the website of the Medical Center Information Systems: Duke University
Health Systems (1999).

11   Other covariates besides pollution clearly affect mortality.  The parameter B might be thought of as containing these other
covariates, for example, evaluated at their means.  That is, B = Boexp{$1x1 + ... + $nxn}, where Bo is the incidence of y when all
covariates in the model are zero, and x1, ... , xn are the other covariates evaluated at their mean values.  The parameter B drops out of
the model, however, when changes in incidences are calculated, and is therefore not important.
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only among members of a particular subgroup of the population (e.g., individuals 65 and older), while
other studies may have considered the entire population in the study location.

The estimated relationship between PM and a health endpoint in a study location is specific to the
type of population studied, the measure of PM used, and the characterization of the health endpoint
considered.  For example, a study may have estimated the relationship between daily average PM
concentrations and daily hospital admissions for “respiratory illness,” among individuals age 65 and
older, where “respiratory illness” includes International Classification of Disease (ICD) codes A, B, and
C.10  If any of the inputs had been different (for example, if the entire population had been considered, or
if “respiratory illness” had consisted of a different set of ICD codes), the estimated C-R function would
have been different.  When using a C-R function estimated in an epidemiological study to estimate
changes in the incidence of a health endpoint corresponding to a particular change in PM in a population
cell, then, it is important that the inputs be appropriate for the C-R function being used -- i.e., that the
measure of PM, the type of population, and the characterization of the health endpoint be the same as (or
as close as possible to) those used in the study that estimated the C-R function.  

Estimating the relationship between PM and a health endpoint, y, consists of (1) choosing a
functional form of the relationship and (2) estimating the values of the parameters in the function
assumed.  The two most common functional forms in the epidemiological literature on PM (and ozone)
and health effects are the log-linear and the linear relationship.  The log-linear relationship is of the form:

or, equivalently,

where the parameter B is the incidence of y when the concentration of PM is zero, the parameter $ is the
coefficient of PM, ln(y) is the natural logarithm of y, and " = ln(B).11  If the functional form of the C-R
relationship is log-linear, the relationship between )PM and )y is:

where y is the baseline incidence of the health effect (i.e., the incidence before the change in PM).  For a
log-linear C-R function, the relative risk (RR) associated with the change )PM is:
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Epidemiological studies often report a relative risk for a given )PM, rather than the coefficient, $, in the
C-R function.  The coefficient can be derived from the reported relative risk and )PM, however, by
solving for $:

The linear relationship is of the form:

where " incorporates all the other independent variables in the regression (evaluated at their mean values,
for example) times their respective coefficients.  When the C-R function is linear, the relationship
between a relative risk and the coefficient, $, is not quite as straightforward as it is when the function is
log-linear.  Studies using linear functions usually report the coefficient directly.

If the functional form of the C-R relationship is linear, the relationship between )PM and )y is
simply:

A few epidemiological studies, estimating the relationship between certain morbidity endpoints
and PM, have used functional forms other than linear or log-linear forms.  Of these, logistic regressions
are the most common.  Appendix B provides further details on the derivation of C-R functions.

3.2 Calculating Adverse Health Effects with CAPMS

CAPMS is a population-based system for modeling population exposure to ambient levels of
criteria air pollutants and estimating the adverse health effects associated with this exposure.  CAPMS
divides the United States into grid cells that correspond to either the REMSAD or the CAMX air quality
models.  CAPMS estimates the changes in incidence of adverse health and welfare effects associated with
given changes in air quality in each grid cell, and then sums the results to obtain county, state or national
results.

To calculate point estimates of the changes in incidence of a given selection of adverse health and
welfare effects associated with a given set of air quality changes, CAPMS performs a series of
calculations at each population grid-cell.  First, CAPMS accesses the C-R functions needed for the
analysis, and then accesses any data needed by the C-R functions.  Typically, these includes the grid-cell
population, the change in population exposure at the grid-cell, and the appropriate incidence rate. 
CAPMS then calculates the change in incidence of each adverse health effect for which a C-R function
has been accessed.

In estimating the change in population exposure, CAPMS estimates the population exposure in
the baseline and control scenarios, as described in Chapter 2, and then takes the difference between the
two.  In the case of binned daily values (365 bins for PM and 153 for ozone), CAPMS calculates the
change in the nth bin concentration as the difference between the baseline nth bin concentration and the
control scenario nth bin concentration.



12  The Latin Hypercube method is used to enhance computer processing efficiency.  It is a sampling method that divides a
probability distribution into intervals of equal probability, with an assumption value for each interval assigned according to the
interval’s probability distribution.  Compared with conventional Monte Carlo sampling, the Latin Hypercube approach is more
precise over a fewer number of trials because the distribution is sampled in a more even, consistent manner (Decisioneering, 1996,
pp. 104-105).
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For functions based on changes in daily average pollutant concentrations, estimated incidence
changes corresponding to air quality changes on each day are summed.  This procedure is applied to each
grid cell in CAPMS.  The resulting incidence change is stored, and CAPMS proceeds to the next grid cell,
where the above process is repeated.  The national change (or the change in any designated geographical
area) is calculated at the end of the process by summing the grid cell-specific changes.

To reflect the uncertainty surrounding predicted incidence changes resulting from the sampling
uncertainty surrounding the pollutant coefficients in the C-R functions used, CAPMS produces a
distribution of possible incidence changes for each adverse health effect, rather than a single point
estimate.  To do this, it uses both the point estimate of the pollutant coefficient ($) in the C-R function
and the standard error of the estimate to produce a normal distribution with mean equal to the estimate,
and standard deviation equal to the standard error of the estimate.

Using a Latin Hypercube method,12 CAPMS takes the nth percentile value of $ from this normal
distribution, for n = 2.5, 7.5, ..., 97.5, and produces an estimate of the incidence change, given the $
selected.  Repeating the procedure for each value of $ selected results in a distribution of incidence
changes in the population grid-cell.  This distribution is stored, and CAPMS proceeds to the next
population grid-cell, where the process is repeated.  A distribution of the national change (or change in a
designated geographical area) is calculated by summing the nth percentile grid cell-specific changes, for n
= 2.5, 7.5, ..., 97.5. 

3.3 Issues in Using Concentration-Response Functions

This section briefly summarizes some of the issues that arise when using C-R functions.

3.3.1 S-Plus Issue

Recently, the Health Effects Institute (HEI) reported findings by health researchers at Johns
Hopkins University and others that have raised concerns about aspects of the statistical methods used in a
number of recent time-series studies of short-term exposures to air pollution and health effects
(Greenbaum, 2002).  The estimates derived from the long-term exposure studies, which account for a
major share of the economic benefits described in Chapter 9, are not affected.  Similarly, the time-series
studies employing generalized linear models (GLMs) or other parametric methods, as well as case-
crossover studies, are not affected.  As discussed in HEI materials provided to EPA and to CASAC
(Greenbaum, 2002), researchers working on the National Morbidity, Mortality, and Air Pollution Study
(NMMAPS) found problems in the default "convergence criteria" used in Generalized Additive Models
(GAM) and a separate issue first identified by Canadian investigators about the potential to underestimate
standard errors in the same statistical package.  These and other scientists have begun to reanalyze the
results of several important time series studies with alternative approaches that address these issues and
have found a downward revision of some results.  For example, the mortality risk estimates for short-term
exposure to PM10 from NMMAPS were overestimated (this study was not used in this benefits analysis of
fine particle effects).   However, both the relative magnitude and the direction of bias introduced by the
convergence issue is case-specific.  In most cases, the concentration-response relationship may be
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overestimated; in other cases, it may be underestimated.   The preliminary reanalyses of the mortality and
morbidity components of NMMAPS suggest that analyses reporting the lowest relative risks appear to be
affected more greatly by this error than studies reporting higher relative risks (Dominici et al., 2002). 

During the compilation of the draft Air Quality Criteria Document, examination of the original
studies used in our benefits analysis found that the health endpoints that are potentially affected by the
GAM issues include: reduced hospital admissions in both the Base and Alternative Estimates, reduced
lower respiratory symptoms in both the Base and Alternative Estimates, and reduced premature mortality
due to short-term PM exposures in the Alternative Estimate.  While resolution of these issues is likely to
take some time, the preliminary results from ongoing reanalyses of some of the studies used in our
analyses (e.g., Dominici et al., 2002) suggest a more modest effect of the S-plus error than reported for
the NMMAPS PM10 mortality study.  In December 2002, a number of researchers submitted reanalysis
reports, and the HEI is currently coordinating review of these reports by a peer review panel.  The final
report on these reanalyses is expected by the end of April 2003, and the results will be incorporated in the
fourth external review draft of the Criteria Document that will be released in summer 2003.  While we
wait for further clarification from the scientific community, we have chosen not to remove these results
from the Nonroad Diesel benefits estimates, nor have we elected to apply any interim adjustment factor
based on the preliminary reanalyses EPA will continue to monitor the progress of this concern, and make
appropriate adjustments as further information is made available.

3.3.2 Composition of PM

Inhalation of fine particles is interpreted as being causally associated with premature death at
concentrations near those experienced by most Americans on a daily basis.  While  biological
mechanisms for this effect have not yet been definitively established, the weight of the available
epidemiological evidence supports an assumption of causality.

All fine particles, regardless of their chemical composition, are assumed to be equally potent in
causing premature mortality.  This is an important assumption, because fine particles directly emitted
from diesel engines are chemically different from fine particles resulting from both utility sources and
industrial facilities, but no clear scientific grounds exist for supporting differential effects estimates by
particle type.  The major epidemiological studies used to support this benefits analysis have used indices
of particles that do not differentiate by particle type.  For example, the American Cancer Society (Pope et
al., 1995) and Harvard six-city (Dockery et al., 1993) analyses use total PM2.5 mass as the index of
particle exposure for most of their analyses.

3.3.3 Thresholds

When conducting clinical (chamber) and epidemiological studies, C-R functions may be
estimated with or without explicit thresholds. Air pollution levels below the threshold are assumed to
have no associated adverse health effects. When a threshold is not assumed, as is often the case in
epidemiological studies, any exposure level is assumed to pose a non-zero risk of response to at least one
segment of the population.

The possible existence of an effect threshold is a very important scientific question and issue for
policy analyses such as this one. The EPA Science Advisory Board Advisory Council for Clean Air
Compliance, which provides advice and review of EPA’s methods for assessing the benefits and costs of
the Clean Air Act under Section 812 of the Clean Air Act, has advised EPA that there is currently no
scientific basis for selecting a threshold of 15 :g/m3 or any other specific threshold for the PM-related
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health effects considered in typical benefits analyses (U.S. EPA, 1999e).  This is supported by the recent
literature on health effects of PM exposure (Rossi et al., 1999; Daniels et al., 2000; Pope, 2000; Schwartz,
2000c)  which finds in most cases no evidence of a non-linear concentration-response relationship and
certainly does not find a distinct threshold for health effects.  The most recent draft of the EPA Air
Quality Criteria for Particulate Matter (U.S. EPA, 2002a) reports only one study, analyzing data from
Phoenix, AZ, that reported even limited evidence suggestive of a possible threshold for PM2.5 (Smith et
al., 2000).

Recent cohort analyses by the Health Effects Institute (Krewski et al., 2000) and Pope et al. (Pope
et al., 2002) provide additional evidence of a quasi-linear concentration-response relationship between
long-term exposures to PM2.5 and mortality.   According to the latest draft PM criteria document, Krewski
et al. “found a visually near-linear relationship between all-cause and cardiopulmonary mortality residuals
and mean sulfate concentrations, near-linear between cardiopulmonary mortality and mean PM2.5, but a
somewhat nonlinear relationship between all-cause mortality residuals and mean PM2.5 concentrations that
flattens above about 20 :g/m3.  The confidence bands around the fitted curves are very wide, however,
neither requiring a linear relationship nor precluding a nonlinear relationship if suggested by reanalyses.” 
The Pope et al. analysis, which represented an extension to the Krewski et al. analysis, found that the
concentration-response relationships relating PM2.5 and mortality “were not significantly different from
linear associations.”

Daniels et al. (2000) examined the presence of threshold in PM10 concentration-response
relationships for daily mortality using the largest 20 U.S. cities for 1987-1994.  The results of their
models suggest that the linear model was preferred over spline and threshold models. Thus, these results
suggest that linear models without a threshold may well be appropriate for estimating the effects of PM10
on the types of  mortality of main interest. Schwartz and Zanobetti (2000) investigated the presence of
threshold by simulation and actual data analysis of 10 U.S. cities.  In the analysis of real data from 10
cities, the combined concentration-response curve did not show evidence of a threshold in the PM10-
mortality associations.  Schwartz et al. (2002) investigated thresholds by combining data on the PM2.5-
mortality relationships for six cities and found an essentially linear relationship down to 2 :g/m3, which is
at or below anthropogenic background in most areas.  They also examined just traffic related particles and
again found no evidence of a threshold.  The Smith et al. (2000) study of associations between daily total
mortality and PM2.5 and PM10-2.5 in Phoenix, AZ (during 1995-1997) also investigated the possibility of a
threshold using a piecewise linear model and a cubic spline model.  For both the piecewise linear and
cubic spline models, the analysis suggested a threshold of around 20 to 25 :g/m3.  However, the
concentration-response curve for PM2.5 presented in this publication suggests more of a U- or V-shaped
relationship than the usual “hockey stick” threshold relationship.

Based on the recent literature and advice from the SAB, we assume there are no thresholds for
modeling health effects.  Although not included in the Base Estimate, the potential impact of a health
effects threshold on avoided incidences of PM-related premature mortality is explored as a key sensitivity
analysis.

Our assumptions regarding thresholds are supported by the National Research Council (2002)in
its recent review of methods for estimating the public health benefits of air pollution regulations.  In their
review, the National Research Council concluded that there is no evidence for any departure from
linearity in the observed range of exposure to PM10 or PM2.5, nor any indication of a threshold.  They cite
the weight of evidence available from both short and long term exposure models and the similar effects
found in cities with low and high ambient concentrations of PM.



13  Zeger et al. (1999, p.  171) reported that: “The TSP-mortality association in Philadelphia is inconsistent with the harvesting-only
hypothesis, and the harvesting-resistant estimates of the TSP relative risk are actually larger – not smaller – than the ordinary
estimates.”
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3.3.4 Application of a Single C-R Function Everywhere 

Whether the C-R relationship between a pollutant and a given health endpoint is estimated by a
single function from a single study or by a pooled function of C-R functions from several studies, that
same C-R relationship is applied everywhere in the benefits analysis.  Although the C-R relationship may
in fact vary somewhat from one location to another (for example, due to differences in population
susceptibilities or differences in the composition of PM), location-specific C-R functions are available
only for those locations in which studies were conducted.

While a single function applied everywhere may result in overestimates of incidence changes in
some locations and underestimates of incidence changes in other locations, these location-specific biases
will to some extent cancel each other out when the total incidence change is calculated.  It is not possible
to know the extent or direction of the bias in the total incidence change based on application of a single
C-R function everywhere.

3.3.5 Degree of Prematurity of Mortality 

It is possible that the short-term studies are detecting an association between PM and mortality
that is primarily occurring among terminally ill people.  Critics of the use of short-term studies for policy
analysis purposes correctly point out that an added risk factor that results in terminally ill people dying a
few days or weeks earlier than they otherwise would have (referred to as “short-term harvesting”) is
potentially included in the measured PM mortality “signal” detected in such a study.  While some of the
detected excess deaths may have resulted in a substantial reduction in lifespan, others may have resulted
in a relatively small decrease in lifespan.  Studies by Spix et al (1993) and Pope et al. (1992) yield
conflicting evidence, suggesting that harvesting may represent anywhere from zero to 50 percent of the
deaths estimated in short-term studies.  However, recent work by Zeger et al. (1999), Schwartz (2000a),
and Zanobetti et al. (2002) that focused exclusively on this issue, reported that short-term harvesting does
not play a major role in the PM-mortality relationship.13  

However, it is not likely that the excess mortality reported in a long-term prospective cohort
study like Pope et al. (1995) contains any significant amount of this short-term harvesting.  The Cox
proportional hazard statistical model used in the Pope study examines the question of survivability
throughout the study period (ten years).  Deaths that are premature by only a few days or weeks within
the ten-year study period (for example, the deaths of terminally ill patients, triggered by a short duration
PM episode) are likely to have little impact on the calculation of the average probability of surviving the
entire ten-year interval.

3.3.6 Estimating Effects for Multiple Age Groups

This analysis focused on two future years, 2020 and 2030, and the population age distribution is
expected to change over time, with a greater percentage of the population moving into older age
categories.  Because baseline incidence rates for older populations tend to exceed those for younger
populations for several health endpoints (most importantly, for mortality), this demographic shift has
important implications for the estimation of future-year incidence change.  If we were to apply a C-R
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function to an entire population, using one average baseline incidence, this demographic shift would be
missed, and the future-year incidence change would be significantly underestimated.

To take into account projected demographic shifts and the corresponding implications for
predicted incidence change, we applied C-R functions to separate age groups within the entire population
to which a C-R function is applicable, using projected populations in each age group.  Projected baseline
incidences (incidence rates times populations) used in the calculation of future-year pollutant-related
incidence change therefore better reflect the expected demographic shifts.  We note that, because we did
not attempt to estimate changes in baseline incidence rates (which may decline slightly over time for
younger age groups and increase for the oldest groups), we may be mis-estimating incidence change for
particular age groups to the extent that baseline incidence rates change over time.

3.3.7 Pooling Study Results

When only a single study has estimated the C-R relationship between a pollutant and a given
health endpoint, the estimation of grid cell-specific incidence change, )y, is straightforward, as noted
above.  When several studies have estimated C-R relationships between a pollutant and a given health
endpoint, the results of the studies can be pooled to derive a single estimate of the function.  If the
functional forms, pollutant averaging times, and study populations are all the same (or very similar), a
pooled, “central tendency” C-R function can be derived from multiple study-specific C-R functions.

However, even if there are differences among the studies that make a pooled C-R function
infeasible, a pooled estimate of the incidence change, )y, and/or the monetary benefit of the incidence
change can be obtained by incorporating the appropriate air quality and baseline incidence data into the
study-specific C-R functions and pooling the resulting study-specific predictions of incidence change (or
monetary benefit) at a national level.  This is the approach that was used here.  

As with estimates based on only a single study, we want to characterize the uncertainty
surrounding pooled estimates of incidence change and/or monetary benefit.  To do this, the pooling
procedure incorporates both within-study uncertainty and between-study variability to derive a pooled
distribution of incidence changes (or monetary benefit).  This distribution incorporates information from
all the studies used in the pooling procedure.  The mean of the distribution is used as a point estimate of
incidence change (or monetary benefit), and the 5th and 95th percentiles of the distribution are used to
characterize the uncertainty surrounding that point estimate.  

The relative contribution of any one study in the pooling process depends on the weight assigned
to that study. There are various methods that can be used to assign weights to studies.  We used a standard
weighting procedure, described in detail in Appendix H.  The pooling of study results to form a
distribution of incidence change (or monetary benefit) proceeded through the following steps:

1. Generate a 20-point national-level Latin Hypercube distribution for each C-R function:  For each
study-specific C-R function, CAPMS generates 20 Latin Hypercube percentile points
representing the distribution of incidence changes that are estimated using that C-R function in a
given population grid-cell, as described in Section 3.2 above.  This distribution is stored, and
CAPMS proceeds to the next population grid-cell, where the process is repeated.  A distribution
of the national change (or change in a designated geographical area) is calculated by summing the
nth percentile grid cell-specific changes, for n = 2.5, 7.5, ..., 97.5. If there is more than one C-R
function for the same health endpoint-pollutant combination, there will be a national-level 20-
point Latin Hypercube distribution of incidence changes corresponding to each one. 



14   There are no uncertainty distributions for hospital admissions unit values (see Chapter 4).
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2. An additional step for ozone-related respiratory hospital admissions: At least one study estimated
separate C-R functions for the two major components of ozone-related respiratory hospital
admissions, COPD and pneumonia, while other studies estimate a C-R function for “all
respiratory admissions” as one category.  In order to pool the results of these studies, we first
develop a national level distribution of “respiratory hospital admissions” from the two separate
distributions for COPD and pneumonia hospital admissions from the same study as follows: On
each iteration of a Monte Carlo procedure, we

• randomly select one of the 20 Latin Hypercube percentile points for COPD hospital
admissions change for the study;

• multiply the selected incidence change estimate by the unit value for COPD hospital
admissions;14

• randomly select one of the 20 Latin Hypercube percentile points for pneumonia hospital
admission change for the study;

• multiply the selected incidence change estimate by the unit value for pneumonia hospital
admissions;

• add the incidence change estimates together; and
• add the monetary benefits estimates together.

In the same Monte Carlo procedure, we also create similar distributions of 5,000 estimates, one
for incidence change and the other for monetary value, for any other ozone-related respiratory
hospital admissions study with which the first study is to be pooled.  On each iteration of the
Monte Carlo procedure, in addition to the above steps, for each study we

• randomly select one of the 20 Latin Hypercube percentile points from the study’s 20-
point distribution of respiratory hospital admissions change; and

• multiply the selected incidence change estimate by the unit value for respiratory hospital
admissions.

The result is that for each study there are now two national-level distributions of 5,000 estimates
each – one for ozone-related “all respiratory hospital admissions” and the other for the monetary
benefit of those admissions avoided.

3. Calculate study-specific weights for pooling:  Using the study-specific national distributions of
incidence change calculated on the previous steps, we calculate a weight for each study – that is,
a probability that, on any iteration of the Monte Carlo procedure used for pooling (see next steps),
the study will be selected.  

3a. For all endpoints except ozone-related respiratory hospital admissions, study weights are
based on the variances of the national-level 20-point Latin Hypercube distributions of
incidence changes, generated in step 1.  We use weights based on a fixed effects model,
unless the fixed effects hypothesis is rejected, in which case we use weights based on a
random effects model.  The fixed and random effects models, the calculation of fixed and
random effects weights, and the hypothesis test to determine which model is appropriate
are all described in detail in Appendix H. 

3b. For ozone-related respiratory hospital admissions, we have two distributions of 5,000
estimates each, for each study – one for incidence change and the other for monetary



15   This appropriately assumes stochastic independence between the incidence change estimate and the unit value estimate.
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value, generated in step 2.  The means and variances of the incidence change distributions
will be different from those for the corresponding monetary value distributions.  Note
that for all other endpoints, the same unit value is used for all studies; the variances of the
distributions of monetary value are therefore just a multiple of the variances of the
distributions of incidence change, so the weights derived from the incidence change
distributions will be the same as those derived from the distributions of monetary value. 
This is not the case for ozone-related respiratory hospital admissions.  Therefore, we
calculate one set of weights, based on the incidence change distributions and another set
of weights based on the monetary value distributions, and we use each separate set of
weights in the separate poolings of incidence change and monetary values.  As with the
other endpoints, we use either fixed effects weights or random effects weights (see
Appendix H).

4. Generate a pooled incidence change distribution and a pooled monetary benefit distribution for an
endpoint (not ozone-related respiratory hospital admissions):  To derive pooled distributions of
national-level incidence changes and monetary benefits for a health endpoint-pollutant
combination, we use a Monte Carlo procedure.  On each of 5,000 iterations, we 

• randomly select a study-specific set of 20 Latin Hypercube incidence changes, using the
weights generated in step 3a;

• randomly select one of the 20 points from the national-level distribution for the selected
study;

• randomly select a value from the corresponding unit value distribution; and
• multiply the two together.15  

The result of the first two steps is a distribution of 5,000 estimates of national-level incidence
change; the result of all four steps is a distribution of 5,000 estimates of national monetary
benefits for the health endpoint.  The mean of each distribution is used as the point estimate for
the endpoint.  The 5th and 95th percentile points are used to characterize the uncertainty
surrounding that point estimate.  

5. Generate a pooled incidence change distribution for ozone-related respiratory hospital
admissions:  To derive a pooled distribution of national-level incidence change for ozone-related
respiratory hospital admissions, we use a Monte Carlo procedure.  On each of 5,000 iterations, we 

• select a study-specific national-level distribution of 5,000 estimates of incidence change,
using the incidence change weights generated on step 3b; and

• randomly select one of the 5,000 estimates from the national level incidence change
distribution for the selected study.

The mean of the distribution is used as the point estimate of incidence change for ozone-related
respiratory hospital admissions.  The 5th and 95th percentile points are used to characterize the
uncertainty surrounding that point estimate.  

7. Generate a pooled monetary benefit distribution for ozone-related respiratory hospital admissions: 
To derive a pooled distribution of national level monetary benefits for ozone-related respiratory
hospital admissions, we use a Monte Carlo procedure.  On each of 5,000 iterations, we 
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• select a study-specific national level distribution of 5,000 estimates of monetary value,
using the monetary value weights generated on step 3b; and

• randomly select one of the 5,000 estimates from the national level monetary value
distribution for the selected study.

The mean of the distribution is used as the point estimate of monetary value for ozone-related
respiratory hospital admissions.  The 5th and 95th percentile points are used to characterize the
uncertainty surrounding that point estimate.  

3.4 Issues in Valuing Changes in Health And Welfare Effects

This section discusses a number of issues that arise in valuing changes in health and welfare
effects.  The first section provides some background on willingness to pay (WTP).  The second section
discusses the possibility that as income changes then WTP would also change.  The third section
describes how WTP estimates, that were originally calculated in 1990 dollars, are corrected for inflation
to get estimates in 2000 dollars.  In the last section, we briefly review how we aggregate benefits
estimates.

3.4.1 Willingness-to-Pay Estimation

WTP is a measure of value an individual places on gaining an outcome viewed as desirable, be it
something that can be purchased in a market or not.  The WTP measure, therefore,  is the amount of
money such that the individual would be indifferent between having the good (or service) and having the
money.  An alternative measure of economic value is willingness to accept (WTA) a monetary
compensation to offset a deterioration in welfare, such that the individual would be indifferent between
having the money and not having the deterioration.  Whether WTP or WTA is the appropriate measure
depends on how property rights are assigned.  Consider an increase in air pollution.  If society has
assigned property rights so that people have a right to clean air, then they must be compensated for an
increase in the level of air pollution.  The appropriate measure of the value of avoiding an increase in air
pollution, in this case, would be the amount people would be willing to accept in compensation for the
more polluted air.  If, on the other hand, society has not assigned people the right to clean air, then the
appropriate measure of the value of avoiding an increase in air pollution would be what people are willing
to pay to avoid it.  The assignment of property rights in our society is unclear.  WTP is by far the more
common measure used in benefits analyses, however, reflecting the fact that this is a much more common
measure in the empirical valuation literature.  In this analysis, wherever possible, the valuation measures
are in terms of WTP.  Where such estimates are not available, alternative measures are used, such as cost-
of-illness and wage-risk studies.  These are discussed for each endpoint where applicable.

For both market and non-market goods, WTP reflects individuals’ preferences.  Because
preferences are likely to vary from one individual to another, WTP for both market (e.g., the purchase of
a new automobile) and non-market goods (e.g., health-related improvements in environmental quality) is
likely to vary from one individual to another.  In contrast to market goods, however, non-market goods,
such as environmental quality improvements, are public goods whose benefits are shared by many
individuals.  The individuals who benefit from the environmental quality improvement may have
different WTPs for this non-market good.  The total social value of the good is the sum of the WTPs of all
individuals who “consume” (i.e., benefit from) the good.  
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In the case of health improvements related to pollution reduction, it is not certain specifically who
will receive particular benefits of reduced pollution.  For example, the analysis may predict 100 hospital
admissions for respiratory illnesses avoided, but the analysis does not estimate which individuals will be
spared those cases of respiratory illness that would have required hospitalization.  The health benefits
conferred on individuals by a reduction in pollution concentrations are, then, actually reductions in the
risk of having to endure certain health problems.  These benefits (reductions in risk) may not be the same
for all individuals (and could be zero for some individuals).  Likewise, the WTP for a given benefit is
likely to vary from one individual to another.  In theory, the total social value associated with the decrease
in risk of a given health problem resulting from a given reduction in pollution concentrations is:

where Bi is the benefit (i.e., the reduction in risk of having to endure the health problem) conferred on the
ith individual (out of a total of N) by the reduction in pollution concentrations, and WTPi(Bi) is the ith

individual’s WTP for that benefit.  

If a reduction in pollution concentrations affects the risks of several health endpoints, the total
health-related social value of the reduction in pollution concentrations is:
 

where Bij is the benefit related to the jth health endpoint (i.e., the reduction in risk of having to endure the
jth health problem) conferred on the ith individual by the reduction in pollution concentrations, and
WTPi(Bij) is the ith individual’s WTP for that benefit.  

The reduction in risk of each health problem for each individual is not known, nor is each
individual’s WTP for each possible benefit he or she might receive known.  Therefore, in practice,
benefits analysis estimates the value of a statistical health problem avoided.  For example, although a
reduction in pollutant concentrations may save actual lives (i.e., avoid premature mortality), whose lives
will be saved cannot be known ex ante.  What is known is that the reduction in air pollutant
concentrations results in a reduction in mortality risk.  It is this reduction in mortality risk that is valued in
a monetized benefit analysis.  Individual WTPs for small reductions in mortality risk are summed over
enough individuals to infer the value of a statistical life saved.  This is different from the value of a
particular, identified life saved.  Rather than  “WTP to avoid a death,” then, it is more accurate to use the
term “the value of a statistical life.”    

Suppose, for example, that a given reduction in PM concentrations results in a decrease in
mortality risk of 1/10,000.  Then for every 10,000 individuals, one individual would be expected to die in
the absence of the reduction in PM concentrations (who would not die in the presence of the reduction in
PM concentrations).  If WTP for this 1/10,000 decrease in mortality risk is $500 (assuming, for now, that
all individuals’ WTPs are the same), then the value of a statistical life is 10,000 x $500, or $5 million. 

A given reduction in PM concentrations is unlikely, however, to confer the same risk reduction
(e.g., mortality risk reduction) on all exposed individuals in the population.  (In terms of the expressions
above, Bi is not necessarily equal to Bj , for i …j).  In addition, different individuals may not be willing to
pay the same amount for the same risk reduction.  The above expression for the total social value



16   Some health effects, such as technical measures of pulmonary functioning (e.g., forced expiratory volume in one second) are
frequently studied by epidemiologists, but there has been very little work by economists on valuing these changes (e.g., Ostro et al.,
1989).
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associated with the decrease in risk of a given health problem resulting from a given reduction in
pollution concentrations may be rewritten to more accurately convey this.  Using mortality risk as an
example, for a given unit risk reduction (e.g., 1/1,000,000), the total mortality-related benefit of a given
pollution reduction can be written as:

where marginal WTPi(x) is the ith individual’s marginal willingness to pay curve, ni is the number of units
of risk reduction conferred on the ith exposed individual as a result of the pollution reduction, and N is the
total number of exposed individuals.  

The values of a statistical life implied by the value-of-life studies were derived from specific risk
reductions.  Implicit in applying these values to a situation involving possibly different risk reductions is
the assumption that the marginal willingness to pay curve is horizontal – that is, that WTP for n units of
risk reduction is n times WTP for one unit of risk reduction.  If the marginal willingness to pay curve is
horizontal, the integral in the above expression becomes a simple product of the number of units of risk
reduction times the WTP per unit.  The total mortality-related benefit (the expression above) then
becomes:

If different subgroups of the population have substantially different WTPs for a unit risk

reduction and substantially different numbers of units of risk reduction conferred on them, then estimating
the total social benefit by multiplying the population mean WTP to save a statistical life times the
predicted number of statistical lives saved could yield a biased result.  Suppose, for example, that older
individuals’ WTP per unit risk reduction is less than that of younger individuals (e.g., because they have
fewer years of expected life to lose).  Then the total benefit will be less than it would be if everyone’s
WTP were the same.  In addition, if each older individual has a larger number of units of risk reduction
conferred on him (because a given pollution reduction results in a greater absolute reduction in risk for
older individuals than for younger individuals), this, in combination with smaller WTPs of older
individuals, would further reduce the total benefit.

While the estimation of WTP for a market good (i.e., the estimation of a demand schedule) is not
a simple matter, the estimation of WTP for a non-market good, such as a decrease in the risk of having a
particular health problem, is substantially more difficult.  Estimation of WTP for decreases in very
specific health risks (e.g., WTP to decrease the risk of a day of coughing or WTP to decrease the risk of
admission to the hospital for respiratory illness) is further limited by a paucity of information.16 
Derivation of the dollar value estimates discussed below was often limited by available information. 



17   Chapter 5 discusses agricultural benefits.
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3.4.2 Change Over Time in WTP in Real Dollars

The WTP for health-related environmental improvements (in real dollars) could change between
now and the year 2020 or 2030.  If real income increases between now and 2020 or 2030, it is reasonable
to expect that WTP, in real dollars, would also increase.  Based on historical trends, the U.S. Bureau of
Economic Analysis projects that, for the United States as a whole as well as for regions and states within
the U.S., mean per capita real income will increase.  For the U.S. as a whole, for example, mean per
capita personal income is projected to increase by about 16 percent from 1993 to 2005 (U.S. Bureau of
Economic Analysis, 1995).

We did not adjust the monetary benefits in this analysis to account for changes over time in real
income.  However, in Chapter 9 of the corresponding Regulatory Impact Analysis (RIA) of the
Preliminary Nonroad Land-based Diesel Engines Standards, EPA (2003) made such adjustments to the
dollar benefits presented in this analysis.  The RIA describes these adjustments in detail. 

3.4.3 Adjusting Benefits Estimates to 2000 Dollars

This section describes the methods used to convert benefits estimates into constant dollars.  In
past RIA analyses, cost and benefit estimates have been presented in constant 1990 dollars.  Benefits
estimates in this analysis, however, are presented in constant 2000 dollars.  To adjust benefits estimates
from constant dollars in one year (e.g., 1990) to constant dollars in another year (e.g., 2000), the method
of adjustment depends on the basis of the benefits estimates.  These methods are presented below.  Four
different bases of estimates are delineated in Exhibit 3-3, including that for agricultural benefits.17

Exhibit 3-3.  Bases of Benefits Estimation

Basis of Benefit Estimation Benefit Endpoints

Cost of illness Hospital admissions
Myocardial Infarction
Asthma-related ER visits
Chronic bronchitis (Alternative Estimate)

Direct estimates of WTP Statistical lives; statistical life-years
Chronic bronchitis (Base Estimate)
Chronic asthma
Morbidity endpoints using WTP
Visibility -- residential
Visibility -- recreational
Consumer cleaning cost savings

Earnings Work loss days (WLDs)
Increased worker productivity
School absences avoided

Changes in yields and prices of market commodities Agricultural benefits

Benefits estimates based on cost-of-illness have been adjusted by using the consumer price
indexes (CPI-Us) for medical care.  Because increases in medical costs have been significantly greater
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than the general rate of inflation, using a general inflator (the CPI-U for “all items” or some other general
inflator) to adjust from 1990 to 2000 dollars would downward bias cost-of-illness estimates in 2000
dollars.  

Benefits estimates based directly on estimates of WTP have been adjusted using the CPI-U for
“all items.”  The CPI-Us, published by the U.S. Dept. of Labor, Bureau of Labor Statistics, can be found
in Council of Economic Advisers (2000, Table B-58).  The derivation of adjustment factors to convert
from 1990 and from 1997 dollars to 2000 dollars for WTP-based and cost-of-illness based valuations is
given for purposes of illustration in Exhibit 3-4.

Exhibit 3-4.  Consumer Price Indexes Used to Adjust WTP-Based, Wage-Based, and Cost-of-
Illness-Based Benefits Estimates to 2000 Dollars

1990
(1)

1997
(2)

2000
(3)

Adjustment
Factor a

(3)/(1)

Adjustment
Factor a

(3)/(2)

Relevant Endpoints

CPI-U for “All
Items”  b

130.7 160.5 172.2 1.3175 1.0729 WTP-based valuation:
1. Statistical lives saved c
2. Chronic bronchitis (Base Estimate)
3. Chronic bronchitis (Alternative
Estimate) – opportunity cost component
4. Chronic asthma
5.  Morbidity endpoints using WTP d

6.  Visibility -- residential
7.  Visibility -- recreational
8.  Consumer cleaning cost savings

Wage-based valuation:
1.  Work loss days (WLDs) e
2.  Increased worker productivity e
3.  School absences avoided e
4.  Hospital admissions – opportunity
cost component
5. Myocardial infarction – opportunity
cost component

CPI-U for Medical
Care b

162.8 234.6 260.8 1.6020 1.1117 Cost-of-illness based valuation:
1.  Hospital admissions – hospital charge
component f

2.  Myocardial Infarction – medical cost
component
3.  Asthma-related ER visits
4. Chronic bronchitis (Alternative
Estimate) – medical expenses component

a Benefits estimates in 1990 or 1997 dollars are multiplied by the appropriate adjustment factor to derive benefits estimates in 2000
dollars.
b Source: Dept. of Labor, Bureau of Labor Statistics; reported in Council of Economic Advisers (2000, Table B-58)
c Adjustments to 1990 $ were originally made by Industrial Economics Inc. using the CPI-U for “all items” (IEc1992).
d Adjustments of WTP-based benefits for morbidity endpoints to 1990 $ were originally made by Industrial Economics Inc. (1993)
using the CPI-U for “all items.”
e Data for these wage-based unit values were already in year 2000 $ and therefore did not require any conversion.
f Hospital charges from the Agency for Healthcare Research and Quality’s Healthcare Utilization Project (2000) were already in
2000 $ and therefore did not require any conversion.   
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Finally, agricultural benefits (changes in farm income and consumer welfare) predicted to result
in a future year have been adjusted to 2000 dollars from 2010 using a GDP price deflator.  In this
analysis, 2010 benefits were adjusted to 2000 dollars by multiplying by 0.6735, the ratio of the 2000 GDP
price deflator (of 112.3 from:Council of Economic Advisers, 1997, Table B-3) to a projected 2010 GDP
price index (of 167.16) forecasted from the trend between 1997 and 2007,  obtained from the USDA
baseline projections (U.S. Department of Agriculture, 1988b, electronic file Tab01.wk1).

3.4.4 Derivation of the Present Discounted Value of Future Benefits

Some health benefits are not expected to occur until some time after exposure is reduced.  The
reduction in expected premature mortalities, for example, is expected to be distributed over several years,
with some statistical lives saved in the same year as exposure is reduced, some in the next year, and so
forth.  People generally are willing to pay more for something now than for the same thing later.  They
would, for example, be willing to pay more for a reduction in the risk of premature death in the same year
as exposure is reduced than for that same risk reduction to be received the following year.  This time
preference for receiving benefits now rather than later is expressed by discounting benefits received later. 
The exact discount rate that is appropriate ( i.e., that represents people’s time preference) is a topic of
much debate.  EPA has typically used a discount rate of 3 percent; OMB has recommended a discount
rate of 7 percent.  Both are used in this analysis.  If d denotes the discount rate, and WTP denotes what an
individual would be willing to pay now to receive a benefit now, then that individual’s willingness to pay
now to receive that same benefit in n years – the present discounted value of that future benefit – is
calculated as

 

Cost-of-illness estimates of the value of avoiding adverse health effects that are chronic effects,
such as chronic bronchitis, also involve discounting, for the same reason – many of the avoided costs
would have been incurred in future years, over the course of the individual’s lifetime.  The value of
avoiding the stream of costs over a number of years is the present discounted value of those avoided costs
– what the individual would pay now to avoid having to pay those costs in the future.  Suppose, for
example, that an individual with chronic bronchitis incurs medical costs of $200 for each of the first 10 
years of having the illness (roughly what has been estimated for someone who gets chronic bronchitis at
age 30).  The $200 incurred throughout the first year, discounted back to the beginning of the first year,
using a 3 percent discount rate, would be ($200)/(1.03) = $194.  That is, an individual whose time
preference is expressed by a 3 percent discount rate would be indifferent between paying $194 now and
paying $200 spread out over the course of the year.  The $200 incurred during the second year,
discounted back to the beginning of the first year would be ($200)/(1.03)2 = $189, and so forth.  The
present discounted value of the stream of costs over N years is calculated as

3.4.5 Aggregation of Monetized Benefits



18  The population of interest has not been defined.  In a location-specific analysis, the population of interest is the population in that
location.  The MWTP is ideally the mean of the WTPs of all individuals in the location.  There is insufficient information, however,
to estimate the MWTP for any risk reduction in any particular location.  Instead, estimates of MWTP for each type of risk reduction
will be taken to be estimates of the MWTP in the United States as a whole, and it will be assumed that MWTPi, i=1, ..., N in each
location is approximately the same as in the United States as a whole.    

Abt Associates Inc. April 20033-23

( )WTP Bi i j
j

J

i

N

, ,
==
∑∑

11

benefit y MWTPjk jk j= ⋅∆

TMB y MWTPk jk j
j

N

= ⋅
=
∑ ∆ .

1

( )∆ ∆y y ejk jk
PMjk k= ⋅ −⋅β 1 ,

The total monetized benefit associated with attaining a given set of pollution changes in a given
location is just the sum of the non-overlapping benefits associated with these changes.  In theory, the total
health-related social value of the reduction in pollution concentrations is:
 

where Bij is the benefit related to the jth health endpoint (i.e., the reduction in probability of having to
endure the jth health problem) conferred on the ith individual by the reduction in pollution concentrations,
and WTPi(Bij) is the ith individual’s WTP for that benefit. 

However, the reduction in probability of each health problem for each individual is not known,
nor do we know each individual’s WTP for each possible benefit he or she might receive.  Therefore, in
practice, benefits analysis estimates the value of a statistical health problem avoided.  The benefit in the
kth location associated with the jth health endpoint is just the change in incidence of the jth health endpoint
in the kth location, )yjk, times the value of an avoided occurrence of the jth health endpoint. 

Assuming that WTP to avoid the risk of a health effect varies from one individual to another,
there is a distribution of WTPs to avoid the risk of that health effect.  This population distribution has a
mean.  It is this population mean of WTPs to avoid or reduce the risk of the jth health effect, MWTPj, that
is the appropriate value in the benefit analysis.18  The monetized benefit associated with the jth health
endpoint resulting from attainment of standard(s) in the kth location, then, is:

and total monetized benefit in the kth location (TMBk) may be written as the sum of the monetized
benefits associated with all non-overlapping endpoints: 

The location- and health endpoint-specific incidence change, )yjk, is modeled as the population
response to the change in pollutant concentrations in the kth location.  The discussion below uses
particulate matter as an example but is equally applicable to any other pollutant, such as ozone. 
Assuming a log-linear C-R function, the change in incidence of the jth health endpoint in the kth location
corresponding to a change in PM, )PMk, in the kth location is:
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where yjk is the baseline incidence of the jth health endpoint in the kth location and $jk is the value of  $j ,
the coefficient of PM in the C-R relationship between PM and the jth health endpoint, in the kth location.  

This approach assumes that there is a distribution of $j’s across the United States, that is, that the
value of $j in one location may not be the same as the value of $j in another location.  The value of $j in
the kth location is denoted as $jk .

The total PM-related monetized benefit for the kth location can now be rewritten as:

The total monetized PM-related benefit to be estimated for a location is thus a function of 2N parameters:
the coefficient of PM, $jk , in the C-R function for the jth health (or welfare) endpoint, for j=1, ..., N,
specific to the kth location, and the population mean WTP to reduce the risk of the jth health endpoint,
MWTPj , j=1, ..., N.

The above model assumes that total monetized benefit is the sum of the monetized benefits from
all non-overlapping endpoints.  If two or more endpoints were overlapping, or if one was contained
within the other (as, for example, hospital admissions for Chronic Obstructive Pulmonary Disease -
COPD - is contained within hospital admissions for “all respiratory illnesses”), then adding the monetized
benefits associated with those endpoints would result in double (or multiple) counting of monetized
benefits.  If some endpoints that are not contained within endpoints included in the analysis are omitted,
then the aggregated monetized benefits will be less than the total monetized benefits.

The total monetized benefit (TMB) is the sum of the total monetized benefits achieved in each
location:

where TMBk denotes the total monetized benefit achieved in the kth location, and K is the number of
locations.

Theoretically, the nation-wide analysis could use location-specific C-R functions to estimate
location-specific benefits.  Total monetized benefits (TMB), then, would just be the sum of these location-
specific benefits:



19  This may also be true of the yij’s.  It may be desirable to apply the uncertainty analysis used for the $’s to these population
parameters as well.  In the current discussion, however, it is assumed that the location-specific incidences are known and therefore
have no uncertainty associated with them.  It is also assumed that MWTPi is the same in all locations.
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There are many locations in the United States, however, and the individual location-specific values of $j
(the $jk’s)  are not known.19  Since the national incidence of the jth health endpoint attributed to PM, Ij, is a
continuous function of the set of $jk’s, that is, since:

is a continuous function of the set of $jk’s, there is some value of $j , which can be denoted $j*, that, if
applied in all locations, would yield the same result as the proper set of location-specific $jk’s.   This
follows from the Intermediate Value Theorem.  While $j* will result in overestimates of incidence in
some locations, it will result in underestimates in others.  If $j* is applied in all locations, however, the
total regional change in incidence will be correct.   That is,

The total regional monetized PM-related benefit can now be rewritten as:

The total regional monetized (PM-related) benefit is thus a function of 2N population means: the $* for
the jth health (or welfare) endpoint ($j* , for j=1, ..., N) and the population mean WTP to reduce the risk of
the jth health endpoint (MWTPj , j=1, ..., N).  

The above formulation of the total monetized benefits associated with a given set of changes in
PM across K locations is applied to ozone as well.  The set of health and welfare endpoints may be
different for ozone, but the calculation of benefits is the same, with )ozonek substituted for )PMk
everywhere.

Both the endpoint-specific coefficients (the $j’s) and the endpoint-specific mean WTPs (the
MWTPj’s) are uncertain, as are the incidence rates and air quality changes.  One approach to estimating
the total monetized benefit is to simply use the mean values of the endpoint-specific coefficients and
mean WTPs in the above formula.  It is preferable, however, to characterize not only the mean total
monetized benefit but the distribution of possible values of total monetized benefit, using a Monte Carlo
approach.  The Monte Carlo approach has three steps.  First, in each of many (e.g., 5000) iterations, we
randomly select a value from the distribution of (national) incidence change of the health or welfare
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effect.  Second, we randomly select a value from the distribution of unit dollar values for that health or
welfare effect.  And third, we multiply the two values.  The result is a distribution of (e.g., 5000)
monetized benefits associated with the given health or welfare effect.  From this distribution, we present
the mean as well as the 5th and 95th percentiles.  In the limit, the mean of the Monte Carlo based
distribution of benefits would be equal to the product of the mean values of the endpoint specific
coefficients and mean WTPs.  However, due to finite sampling, there may be slight deviations between
the estimated Monte Carlo mean and the simple mean.

3.5 Characterization of Uncertainty

In any complex analysis, there are likely to be many sources of uncertainty.  This analysis is no
exception.  Many inputs are used to derive the final estimate of economic benefits, including emission
inventories, air quality models (with their associated parameters and inputs), epidemiological estimates of
C-R functions, estimates of values, population estimates, income estimates, and estimates of the future
state of the world (i.e., regulations, technology, and human behavior).

Each of these inputs may be uncertain, and depending on their location in the benefits analysis,
may have a disproportionately large impact on final estimates of total benefits.  For example, emissions
estimates are used in the first stage of the analysis.  As such, any uncertainty in emissions estimates will
be propagated through the entire analysis.  When compounded with uncertainty in later stages, small
uncertainties in emissions can lead to much larger impacts on total benefits.

Exhibit 3-5 catalogs some more of the selected sources of uncertainties in the benefits analysis.
Some key sources of uncertainty in each stage of the benefits analysis are:

•  gaps in scientific data and inquiry
•  variability in estimated relationships, such as C-R functions, introduced through differences in
study design and statistical modeling
•  errors in measurement and projection for variables such as population growth rates
•  errors due to misspecification of model structures, including the use of surrogate variables, such
as using PM10 when PM2.5 is not available, excluded variables, and simplification of complex
functions
•  biases due to omissions or other research limitations.
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Exhibit 3-5.  Key Sources of Uncertainty in the Benefit Analysis

Uncertainties
associated with
concentration-
response functions

• The value of the ozone- or PM-coefficient in each C-R function.
• Application of a single C-R function to pollutant changes and populations in all locations.
• Similarity of future year C-R relationships to current C-R relationships. 
• Correct functional form of each C-R relationship. 
• Extrapolation of C-R relationships beyond the range of ozone or PM concentrations observed in the study. 
• Application of C-R relationships only to those subpopulations matching the original study population.

Uncertainties
associated with
ozone and PM
concentrations

• Responsiveness of the models to changes in precursor emissions resulting from the control policy.
• Projections of future levels of precursor emissions, especially ammonia and crustal materials.
• Model chemistry for the formation of ambient nitrate concentrations.
• Lack of ozone monitors in rural areas requires extrapolation of observed ozone data from urban to rural
areas.
• Use of separate air quality models for ozone and PM does not allow for a fully integrated analysis of
pollutants and their interactions.
• Full ozone season air quality distributions are extrapolated from a limited number of simulation days.
• Comparison of model predictions of particulate nitrate with observed rural monitored nitrate levels
indicates that REMSAD overpredicts nitrate in some parts of the Eastern US and underpredicts nitrate in
parts of the Western US.

Uncertainties
associated with pm
mortality risk

• No scientific literature supporting a direct biological mechanism for observed epidemiological evidence.
• Direct causal agents within the complex mixture of PM have not been identified.
• The extent to which adverse health effects are associated with low level exposures that occur many times in
the year versus peak exposures.
• Possible confounding in the epidemiological studies of PM2.5, effects with other factors (e.g., other air
pollutants, weather, indoor/outdoor air, etc.).
• The extent to which effects reported in the long-term exposure studies are associated with historically
higher levels of PM rather than the levels occurring during the period of study.
• Reliability of the limited ambient PM2.5 monitoring data in reflecting actual PM2.5 exposures.

Uncertainties
associated with
possible lagged
effects

• The portion of the PM-related long-term exposure mortality effects associated with changes in annual PM
levels would occur in a single year is uncertain as well as the portion that might occur in subsequent years.

Uncertainties
associated with
baseline incidence
rates

• Some baseline incidence rates are not location-specific (e.g., those taken from studies) and may therefore
not accurately represent the actual location-specific rates.
• Current baseline incidence rates may not approximate well baseline incidence rates in 2020 and 2030.
• Projected population and demographics may not represent well future-year population and demographics.

Uncertainties
associated with
economic
valuation

• Unit dollar values associated with health and welfare endpoints are only estimates of mean WTP and
therefore have uncertainty surrounding them. 
• Mean WTP (in constant dollars) for each type of risk reduction may differ from current estimates due to
differences in income or other factors.
• Future markets for agricultural and forestry products are uncertain.

Uncertainties
associated with
aggregation of
monetized benefits

• Health and welfare benefits estimates are limited to the available C-R functions.  Thus, unquantified or
unmonetized benefits are not included.

3.5.1 Approach for Addressing Uncertainty

Given the wide variety of sources for uncertainty and the potentially large degree of uncertainty
about any estimate, it is necessary for us to address uncertainty in several ways, based on the following
types of uncertainty:

Quantifiable Uncertainty in Benefits Estimates.  For some parameters or inputs it may be
possible to provide a statistical representation of the underlying uncertainty distribution. Quantitative
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uncertainty may include measurement uncertainty or variation in estimates across or within studies.  For
example, the variation in VSL results across the 26 studies that underlie the Base Estimate represent a
quantifiable uncertainty.

Uncertainty in the Basis for Quantified Estimates.  Often it is possible to identify a source of
uncertainty (for example, an ongoing debate over the proper method to estimate premature mortality) that
is not readily addressed through traditional uncertainty analysis.  In these cases, it is possible to
characterize the potential impact of this uncertainty on the overall benefits estimates through sensitivity
analyses.

Nonquantifiable Uncertainty.  Uncertainties may also result from omissions of known effects
from the benefits calculation, perhaps owing to a lack of data or modeling capability.  For example, in this
analysis we were unable to quantify the benefits of avoided airborne nitrogen deposition on aquatic and
terrestrial ecosystems, or avoided health and environmental effects associated with reductions in CO
emissions.

It should be noted that even for individual endpoints, there is usually more than one source of
uncertainty.  This makes it difficult to provide an overall quantified uncertainty estimate for individual
endpoints or for total benefits.  For example, the C-R function used to estimate avoided premature
mortality has an associated standard error which represents the sampling error around the pollution
coefficient in the estimated C-R function.  It is possible to report a confidence interval around the
estimated incidences of avoided premature mortality based on this standard error.  However, this would
omit the contribution of air quality changes, baseline population incidences, projected populations
exposed, and transferability of the C-R function to diverse locations to uncertainty about premature
mortality.  Thus, a confidence interval based on the standard error gives a misleading picture about the
overall uncertainty in the estimates.  In this analysis, we present information on the uncertainty
surrounding particular C-R and valuation functions.  However, this information should be interpreted
within the context of the larger uncertainty surrounding the entire analysis.

Our approach to characterizing model uncertainty is to present a base estimate of the benefits,
based on the best available scientific literature and methods, and to then provide sensitivity analyses to
illustrate the effects of uncertainty about key analytical assumptions.  In addition, we provide an estimate
of the 90 percent confidence interval surrounding the total benefits estimate, based solely on the statistical
uncertainty surrounding the estimated C-R functions and the assumed distributions around the unit values. 
Our analysis of the preliminary control options has not included formal integrated uncertainty analyses,
although we have conducted several sensitivity tests and have analyzed a full Alternative Estimate based
on changes to several key model parameters.

The recent report by the National Research Council (2002) on estimating public health benefits of
air pollution regulations recommended that EPA begin to move the assessment of uncertainties from its
ancillary analyses into its base analyses by conducting probabilistic, multiple-source uncertainty analyses.
However, for this proposal we did not attempt to assign probabilities to sensitivity estimates due to a lack
of peer-reviewed methods.  At this time, we simply demonstrated the sensitivity of our benefits results to
key uncertain parameters.

Our estimate of total benefits should be viewed as an approximate result because of the wide
range of sources of uncertainty that we have not incorporated.  The 90 percent confidence interval based
on statistical error and cross-study variability provides some insight into how uncertain our estimate is
with regards to those sources of uncertainty.  However, it does not capture other sources of uncertainty
regarding other inputs to the model, including emissions, air quality, and aspects of the health science not



20   Because this is a regional analysis in which, for each endpoint, a single C-R function is applied everywhere, there are two
sources of uncertainty about incidence: (1) statistical uncertainty (due to sampling error) about the true value of the pollutant
coefficient in the location where the C-R function was estimated, and (2) uncertainty about how well any given pollutant coefficient
approximates $*.

21   Although such an “uncertainty distribution” is not formally a Bayesian posterior distribution, it is very similar in concept and
function (see, for example, the discussion of the Bayesian approach in Kennedy 1990, pp. 168-172).
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captured in the studies, such as the likelihood that PM is causally related to premature mortality and other
serious health effects.

3.5.2 Statistical Uncertainty Bounds

Although there are several sources of uncertainty affecting estimates of endpoint-specific
benefits, the sources of uncertainty that are most readily quantifiable in this analysis are the C-R
relationships and uncertainty about unit dollar values.  The total dollar benefit associated with a given
endpoint depends on how much the endpoint will change due to the final standard (e.g., how many
premature deaths will be avoided) and how much each unit of change is worth (e.g., how much a
premature death avoided is worth).20  However, as we have noted, this omits important sources of
uncertainty, such as the contribution of air quality changes, baseline population incidences, projected
populations exposed, transferability of the C-R function to diverse locations, and uncertainty about
premature mortality.  Thus, a confidence interval based on the standard error would provide a misleading
picture about the overall uncertainty in the estimates.  The empirical evidence about uncertainty is
presented where it is available.

Both the uncertainty about the incidence changes and uncertainty about unit dollar values can be
characterized by  distributions.  Each “uncertainty distribution” characterizes our beliefs about what the
true value of an unknown (e.g., the true change in incidence of a given health effect) is likely to be, based
on the available information from relevant studies.21  Unlike a sampling distribution (which describes the
possible values that an estimator of an unknown value might take on), this uncertainty distribution
describes our beliefs about what values the unknown value itself might be.  Such uncertainty distributions
can be constructed for each underlying unknown (such as a particular pollutant coefficient for a particular
location) or for a function of several underlying unknowns (such as the total dollar benefit of a
regulation).  In either case, an uncertainty distribution is a characterization of our beliefs about what the
unknown (or the function of unknowns) is likely to be, based on all the available relevant information. 
Uncertainty statements based on such distributions are typically expressed as 90 percent credible
intervals.  This is the interval from the fifth percentile point of the uncertainty distribution to the ninety-
fifth percentile point.  The 90 percent credible interval is a “credible range” within which, according to
the available information (embodied in the uncertainty distribution of possible values), we believe the true
value to lie with 90 percent probability.  Credible ranges do not have to be 90 percent ranges, however. 
We are using 20-point Latin Hypercubes to represent incidence change distributions, which represent a
distribution by 20 percentile points, spaced 5 percentile points apart, starting from the 2.5th and ending
with the 97.5th percentile point.  Because of this, we do not know either the 5th or the 95th percentile
points of the incidence change distributions.  Therefore, instead of characterizing uncertainty by 90
percent credible intervals, we use the 2.5th and 97.5th percentiles of the distribution to characterize
uncertainty by a 95 percent credible range.  

The uncertainty about the total dollar benefit associated with any single endpoint combines the
uncertainties from these two sources, and is estimated with a Monte Carlo method.  In each iteration of
the Monte Carlo procedure, a value is randomly drawn from the incidence distribution and a value is



22   This method assumes that the incidence change and the unit dollar value for an endpoint are stochastically independent.
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randomly drawn from the unit dollar value distribution, and the total dollar benefit for that iteration is the
product of the two.22  If this is repeated for many (e.g., thousands of) iterations, the distribution of total
dollar benefits associated with the endpoint is generated. 

Using this Monte Carlo procedure, a distribution of dollar benefits may be generated for each
endpoint.  The mean and median of this Monte Carlo-generated distribution are good candidates for a
point estimate of total monetary benefits for the endpoint.  As the number of Monte Carlo draws gets
larger and larger, the Monte Carlo-generated distribution becomes a better and better approximation to the
underlying uncertainty distribution of total monetary benefits for the endpoint.  In the limit, it is identical
to the underlying distribution.

3.5.3 Base and Alternative Estimates

We calculated the Base Estimate, using our current interpretation of the scientific and economic
literature; regarding the best available data, modeling methods; and assumptions most appropriate to
adopt in the face of important uncertainties.  The majority of the analytical assumptions used to develop
the Base Estimate have been reviewed and approved by EPA's Science Advisory Board (SAB).  However,
we recognize that data and modeling limitations as well as simplifying assumptions can introduce
significant uncertainty into the benefit results and that reasonable alternative assumptions exist for some
inputs to the analysis, such as the mortality C-R functions.

To address these concerns, we supplemented our Base Estimate of benefits with an Alternative
Estimate that shows the impact of changing several important assumptions about the estimation and
valuation of reductions in premature mortality.  This approach provides an alternative estimate of health
benefits using the time series studies in place of cohort studies, as well as alternative valuation methods
for mortality and chronic bronchitis.

3.5.4 Impacts on Sensitive Subpopulations

EPA is currently evaluating how air pollution related symptoms in the asthmatic population
should be incorporated into the overall benefits analysis.  Clearly, studies of the general population also
include asthmatics, so estimates based solely on the asthmatic population cannot be directly added to the
general population numbers without double-counting.  In one specific case, upper respiratory symptoms
in children, the only study available was limited to asthmatic children, so this endpoint is included in the
calculation of total benefits.  However, other endpoints, such as lower respiratory symptoms, are
estimated for the total population of children.

Given the increased susceptibility of the asthmatic population, it is of interest to understand better
the specific impacts on asthmatics.  We provided a separate set of estimated health impacts for asthmatic
populations with the results in Chapter 6.  However, the reader should carefully note that these are not
additive, nor can they be easily combined with other endpoints to derive total benefits.  They are provided
only to highlight the potential impacts on a susceptible population.

Several epidemiological studies have estimated concentration-response functions relating
pollution to various symptoms (wheeze, cough, dyspnea, chest tightness, shortness of breath) among
asthmatics.  One or all of these symptoms may be considered indicators of an asthma episode when it
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occurs in an asthmatic.  We currently have the following asthma exacerbation health endpoints in this
analysis: asthma attack, moderate or worse, shortness of breath, wheeze, cough, and one or more
symptoms.

To gain further understanding into the public health impact of the modeled change in air quality
associated with the preliminary control options, we examined the incidence of health effects occurring in
three age groups: children (0-17), adults (18-64), and elderly adults (65 and older).  Certain endpoints
occur only in a subset of age groups, so not all endpoints are reported for all age groups.  Two sets of age
group estimates were calculated.  The first is based on the specific age ranges examined in the
epidemiological studies, for example, the Dockery et al (1996) acute bronchitis study focused on a sample
population aged 8 to 12.  These are the estimates that were used in deriving total incidences as reported in
Chapter 6, Exhibit 6-2.  In many cases however, the study populations were defined as a matter of
convenience or due to data availability, rather than due to any biological factor that would restrict the
effect to the specific age group.  In order to gain a more complete understanding of the potential
magnitude of the health impact in the entire population, we calculate a separate estimate including the
health impact on all population within an age group. The two sets of age specific incidence estimates are
provided in Chapter 6, Exhibit 6-5.

We also estimated respiratory symptoms and attacks occurring in the asthmatic population, based
on the studies defined in Chapter 4, Table 4-23.  As with the age group specific estimates, we provide two
sets of calculations, one based on applying the C-R function only to the specific population subgroup
included in a study’s sample population, and another based on applying the C-R function to all
populations within a broader population.  The two sets of asthma symptom incidences are provided in
Chapter 6, Exhibit 6-6.  Note that the asthma symptom estimates provided in Exhibit 6-6 are not additive
to total benefits.  They are provided to show the specific impacts on an especially susceptible
subpopulation.  Also note that the estimates are not additive even within the exhibit.  We have grouped
the estimates based on the type of symptoms measured, but there is the potential for considerable overlap. 
However, these estimates provide an illustration of the consistency of the effects across studies and
populations of asthmatics.

Sensitivity Calculations

In addition to the Base and Alternative estimates of benefits, we present a series of sensitivity
calculations that make use of other sources of concentration-response and valuation data for key benefits
categories, as well as examining key analytical parameters, such as the form of the lag between changes in
PM exposure and realization of changes in health outcomes.  These sensitivity calculations are conducted
relative to the Base Estimate and not for the Alternative Estimate.

The sensitivity estimates can be used to answer questions like “What would total benefits be if we
were to value avoided incidences of premature mortality using the a statistical life years approach rather
than the VSL approach?”  These estimates examine sensitivity to both valuation issues (e.g. the correct
value for a statistical life saved) and for physical effects issues (e.g., possible recovery from chronic
illnesses).  These estimates are not meant to be comprehensive.  Rather, they reflect some of the key
issues likely to have a significant impact on total benefits..

In our sensitivity calculations, we consider different assumptions regarding key parameters in the
Base Estimate.  They can be broken down into three broad groups.  First, we consider different
assumptions regarding the estimation of benefits associated with reductions in premature mortality from
long-term exposure, including selection of the C-R function, structure of the lag between reduced
exposure and reduced mortality risk, the relationship between age and VSL, and effect thresholds. 
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Second, we consider additional studies that potentially overlap with studies already included in the Base
Estimate.  Finally, we consider different assumptions about specific elements of the benefits analysis – 
infant mortality associated with exposure to PM, treatment of reversals in chronic bronchitis as lowest
severity cases, effects of ozone on new incidences of chronic asthma, alternative C-R functions for PM
hospital admissions, valuation of residential visibility,  valuation of recreational visibility at Class I areas
outside of the study regions examined in the Chestnut and Rowe (1990a; 1990b) study, and valuation of
household soiling damages.  Exhibit 3-6 summarizes the sensitivity calculations.  

Exhibit 3-6.  Sensitivity Calculations

Category Description

Long-term Mortality

Alternative studies for premature
mortality

A number of studies provide an alternative estimate of the relationship between chronic
PM exposure and mortality.

Alternative mortality lag structures Calculate the impact different lag structures have on the estimation of benefits associated
with avoided mortality incidence.

Thresholds Calculate the impact varying threshold assumptions have on the estimation of mortality
incidence based on the Krewski et al. (2000) study.

Overlapping endpoints

Ozone-related mortality Ozone-related mortality benefits estimated using a pooled analysis based on four U.S.
studies. 

Any-of-19 symptoms. Due to the potential for overlap with health effects covered in the estimate of MRADs and
both PM- and ozone-related asthma attacks, we present Any-of-19 Respiratory Symptoms
separately.

Alternative and Supplementary Estimates

Infant mortality The Woodruff et al. (1997) study provides an estimate of the relationship between chronic
exposure and infant mortality.

Chronic asthma Avoided incidences of chronic asthma are estimated using the McDonnell et al. (1999) C-
R function.

PM10 hospital admissions Samet et al. (2000) is used to estimate respiratory and cardiovascular hospital admissions.

Reversals in chronic bronchitis
treated as lowest severity cases

Instead of omitting those cases of chronic bronchitis that reverse after a period of time,
they are treated as being cases with the lowest severity rating.

Value of visibility changes in all
Class I areas

Values of visibility changes at Class I areas in California, the Southwest, and the
Southeast are transferred to visibility changes in Class I areas in other regions of the
country.

Value of visibility changes in
Eastern U.S. residential areas

Value of visibility changes outside of Class I areas are estimated for the Eastern U.S.
based on the reported values for Chicago and Atlanta derived from McClelland et al.
(1991).

Value of visibility changes in
Western U.S. residential areas

Value of visibility changes outside of Class I areas are estimated for the Western U.S.
based on the reported values for Chicago and Atlanta from McClelland et al. (1990).

Household soiling damage Value of decreases in expenditures on cleaning are estimated using values derived from
Manuel et al. (1982).

Sensitivity Calculations for Long-term Mortality

In examining the sensitivity of the mortality estimate, we considered three key assumptions. 
First, we considered the impact of alternative models examining the relationship between long-term PM
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years.
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exposure and premature mortality.  Second, we considered alternative lag structures.  And third, we
considered the potential impact of an effects threshold.

Alternative Long-term PM Studies.  A number of studies that estimate plausible alternative
relationships between PM exposure and premature mortality are presented as alternative calculations to
the mortality study included in the base analysis (Krewski et al., 2000, mean all-cause mortality).  These
alternative mortality functions are discussed in more detail in Section 4.

Alternative Lag Structures.  As noted by the SAB (U.S. EPA, 1999d, p. 9), "some of the
mortality effects of cumulative exposures will occur over short periods of time in individuals with
compromised health status, but other effects are likely to occur among individuals who, at baseline, have
reasonably good health that will deteriorate because of continued exposure. No animal models have yet
been developed to quantify these cumulative effects, nor are there epidemiologic studies bearing on this
question." However, they also note that "Although there is substantial evidence that a portion of the
mortality effect of PM is manifest within a short period of time, i.e., less than one year, it can be argued
that, if no lag assumption is made, the entire mortality excess observed in the cohort studies will be
analyzed as immediate effects, and this will result in an overestimate of the health benefits of improved
air quality. Thus some time lag is appropriate for distributing the cumulative mortality effect of PM in the
population."

In the base analysis, based on SAB advice, we assume that mortality occurs over a five year
period, with 25 percent of the deaths occurring in the first year, 25 percent in the second year, and 16.7
percent in each of the third, fourth, and fifth years.  Note that the selection of a 5 year lag is not supported
by any scientific literature on PM-related mortality.  Rather it is intended to be a reasonable guess at the
appropriate distribution of avoided incidences of PM-related mortality.

The SAB recommended the five-year distributed lag be used for the base analysis, and also
recommended that alternative lag structures be explored as a sensitivity analysis (U.S. EPA, 1999d, p. 9).
Specifically, they recommended an analysis of 0, 8, and 15 year lags.  The 0 year lag is representative of
EPA's assumption in previous RIAs, and the 8 and 15 year lags are based on the study periods from the
Pope, et al. (1995) and Dockery, et al. (1993) studies.23  However, it should be kept in mind that neither
study assumed any lag structure when estimating the relative risks from PM exposure, and do not contain
any data supporting or refuting the existence of a lag.  Any lag structure applied to the avoided incidences
estimated from either of these studies is an assumed structure.  Moreover, the imposition of a lag structure
does not change the total number of estimated deaths, but rather the timing of those deaths.

Thresholds.  A number of studies (Rossi et al., 1999; Daniels et al., 2000; Pope, 2000; Schwartz,
2000c) have found little evidence for the existence of a threshold – a point below which further reductions
no longer yield premature mortality reduction benefits.  Nevertheless, to examine the impact of this
possibility, we estimated how the number of premature mortalities in the Base Estimate might change
under a range of alternative assumptions for a PM mortality threshold. 

One important assumption that we adopted for the threshold sensitivity analysis is that no
adjustments are made to the shape of the C-R function above the assumed threshold.  Instead, thresholds
were applied by simply assuming that any changes in ambient concentrations below the assumed
threshold have no impacts on the incidence of premature mortality.  If there were actually a threshold,
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then the shape of the C-R function would likely change and there would be no health benefits to
reductions in PM below the threshold.

Overlapping Endpoints

In order to provide the reader with a fuller understanding of the health effects associated with
reductions in air pollution associated with the preliminary control options, this set of sensitivity estimates
examines those health effects which, if included in the base estimate, could result in double-counting of
benefits.  Note that these supplemental estimates should not be considered as additive to the total estimate
of benefits, but illustrative of these issues and uncertainties.

%First, we present an alternative estimate of minor respiratory symptoms, termed Any-of-19
Respiratory Symptoms (Krupnick et al., 1990).  We had excluded Any-of-19 Respiratory
Symptoms from the base analysis because of potential for overlap with health effects covered in
the estimate of MRADs (Ostro and Rothschild, 1989).  

%Second, we present ozone-related mortality.  We had excluded ozone-related mortality from
the base analysis because of concerns about double-counting the impact of PM and ozone on
premature mortality.  Additional research is needed to provide separate estimates of the effects for
PM and ozone, so to be conservative we included only the effect of PM on premature mortality in
the base analysis. 

Ozone-Related Mortality.  There has been a great deal of research recently on the potential
effect of ozone on premature mortality.  A recent analysis by Thurston and Ito (2001) reviewed
previously published time series studies of the effect of daily ozone levels on daily mortality and found
that previous EPA estimates of the short-term mortality benefits of the ozone NAAQS (U.S. EPA, 1997a)
may have been underestimated by up to a factor of two.  Thurston and Ito hypothesized that much of the
variability in published estimates of the ozone/mortality effect could be explained by how well each
model controlled for the influence of weather, an important confounder of the ozone/mortality effect, and
that earlier studies using less sophisticated approaches to controlling for weather consistently
under-predicted the ozone/mortality effect.  

Thurston and Ito (2001) found that models incorporating a non-linear temperature specification
appropriate for the "U-shaped" nature of the temperature/mortality relationship (i.e., increased deaths at
both very low and very high temperatures) produced ozone/mortality effect estimates that were both more
strongly positive (a two percent increase in relative risk over the pooled estimate for all studies evaluated)
and consistently statistically significant.  Further accounting for the interaction effects between
temperature and relative humidity produced even more strongly positive results.  Inclusion of a PM index
to control for PM/mortality effects had little effect on these results, suggesting an ozone/mortality
relationship independent of that for PM.  However, most of the studies examined by Thurston and Ito
only controlled for PM10 or broader measures of particles and did not directly control for PM2.5. As such,
there may still be potential for confounding of PM2.5 and ozone mortality effects, as ozone and PM2.5 are
highly correlated during summer months in some areas.

 There are a number of studies examining the relationship between ambient ozone levels and
daily mortality levels.  We calculated the potential impact of ozone on mortality, using results from four
U.S. studies (Kinney et al., 1995; Moolgavkar et al., 1995; Ito and Thurston, 1996; Samet et al., 1997),
assuming that demographic and environmental conditions on average would be more similar between
these studies and the conditions prevailing with the implementation of the Preliminary Nonroad
Landbased Diesel Engine Rule.
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Alternative and Supplementary Estimates

We also examined how the value for individual endpoints or total benefits would change if we
were to make a different assumption about specific elements of the benefits analysis.  Specifically, we
examined the impact of alternative assumptions regarding infant mortality associated with exposure to
PM, effects of ozone on new incidences of chronic asthma, treatment of reversals in chronic bronchitis as
lowest severity cases, alternative C-R functions for PM hospital admissions, valuation of residential
visibility,  valuation of recreational visibility at Class I areas outside of the study regions examined in the
Chestnut and Rowe (1990a; 1990b) study, and valuation of household soiling damages.

Infant Mortality.  The estimated effect of PM exposure on premature mortality in infants (post-
neonatal) is based on a single U.S. study (Woodruff et al., 1997) that, on recommendation of the EPA
Science Advisory Board, was deemed too uncertain to include in the base analysis.  Adding this endpoint
to the base benefits estimate would result in an increase in total benefits.

Chronic Asthma.  Chronic asthma is characterized by repeated incidences of inflammation of the
lungs that causes restriction in the airways and results in shortness of breath, wheezing, and coughing. 
Asthma is also characterized by airway hyper responsiveness to stimuli.  We estimate the development of
chronic asthma using a recent study by McDonnell, et al. (1999) that found a statistical association
between ozone and the development of asthma in adult white, non-Hispanic males.  However, questions
have been raised regarding the statistical validity of the associations found in this study, and the
appropriateness of transferring the estimated C-R function from the study populations (white, non-
Hispanic males) to other male populations (e.g., African-American males).  Moreover, other studies have
not identified an association between air quality and the onset of asthma.  We therefore include the results
of this study as a sensitivity calculation.

Chronic Bronchitis Reversals.  Reversals in chronic bronchitis incidences are defined as those
cases where an individual reported having chronic bronchitis at the beginning of the study period but
reported not having chronic bronchitis in follow-up interviews at a later point in the study period.  Since,
by definition, chronic diseases are long-lasting or permanent, if the disease goes away it is not chronic.  In
the base analysis, these reversals are given a value of zero.  As an alternative calculation, we estimate
reversals and value each as a case of the mildest form of chronic bronchitis.

Alternative C-R Functions for PM Hospital Admissions.  A recent study by the Health Effects
Institute (HEI) (Samet et al., 2000) estimated separate models for PM10 and pneumonia, COPD and
cardiovascular diseases in each of fourteen cities in the United States, as well as pooled estimates across
these cities. The pooled estimates from this study are desirable for several reasons.  First, the HEI models
are distributed lag models that are designed to capture not only same-day effects of PM but the effects of
PM on a series of days subsequent to exposure.  A second advantage of the HEI models is that they
represent the PM effect across a range of cities in the United States.  However, we chose not to use this
study in the base analysis because it is based on PM10, and most of the estimated change in air quality will
affect PM2.5 levels, and not coarse PM10 levels. 

Recreational Visibility.  The alternative calculation for recreational visibility is an estimate of
the full value of visibility in the entire region affected by the preliminary NonRoad Standard.  The
Chestnut and Rowe (1990a) study from which the base valuation estimates are derived only examined
WTP for visibility changes in the southeastern portion of the affected region.  In order to obtain estimates
of WTP for visibility changes in the northeastern and central portion of the affected region, we have to
transfer the southeastern WTP values.  This introduces additional uncertainty into the estimates. 
However, we have taken steps to adjust the WTP values to account for the possibility that a visibility
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improvement in parks in one region, is not necessarily the same environmental quality good as the same
visibility improvement at parks in a different region.  This may be due to differences in the scenic vistas
at different parks, uniqueness of the parks, or other factors, such as public familiarity with the park
resource.  To take this potential difference into account, we adjusted the WTP being transferred by the
ratio of visitor days in the two regions.

Residential Visibility.  The alternative calculations for residential visibility are based on the
McClelland et al. (1991) study of WTP for visibility changes in Chicago and Atlanta.  The residential
visibility estimates from the available literature have been determined by the SAB to be inadequate for
use in a base estimate in a benefit-cost analysis, because they have not undergone rigorous peer review
(U.S. EPA, 1999c, p. 13).  However, residential visibility is likely to have some value and the McClelland
et al. study is probably the best in estimating the likely magnitude of the benefits of residential visibility
improvements.

Household Soiling.  The alternative calculation for household soiling is based on the Manuel et
al. (1982) study of consumer expenditures on cleaning and household maintenance.  However, the data
used to estimate household soiling damages in the Manuel et al. study is from a 1972 consumer
expenditure survey and as such may not accurately represent consumer preferences in the future.  Despite
this limitation, we believe that the Manuel et al. estimates are still useful in providing an estimate of the
likely magnitude of the benefits of reduced PM household soiling.

3.5.5 Unquantified Benefits

In considering the monetized benefits estimates, the reader should remain aware of the
limitations.  One significant limitation of both the health and welfare benefits analyses is the inability to
quantify many of the PM and ozone-induced adverse health and welfare effects.  Unquantified welfare
effects include reduced acid and particulate deposition damage to cultural monuments and other materials;
reduced ozone effects on forested ecosystems; and environmental benefits due to reductions of impacts of
acidification in lakes and streams and eutrophication in coastal areas (see Exhibit 1-2).

Additionally, we have not quantified a number of known or suspected adverse health effects
linked with PM and ozone for which appropriate concentration-response functions are not available or
which do not provide easily interpretable outcomes.  These include low birth weight, changes in
pulmonary function, morphological changes, altered host defense mechanisms, non-fatal cancers, and
non-asthma respiratory emergency room visits.  These omissions tend to lead to lower Base and
Alternative estimates of the monetized benefits attributable to the preliminary control options. 

In addition to unquantified benefits, there may also be environmental costs that we are unable to
quantify.  Several of these environmental cost categories are related to nitrogen deposition, while one
category is related to the issue of ultraviolet light.  The net effect of excluding benefit and disbenefit
categories from the estimate of total benefits depends on the relative magnitude of the effects. 



24  Appendix D presents the general derivation of C-R functions from epidemiological models.   Appendices F and G present
additional detail on specific C-R functions and the underlying studies.  Appendix E provides additional detail on the incidence and
prevalence rates used in the C-R functions.
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4 Health Benefits

The most significant monetized benefits of reducing ambient concentrations of PM and ozone are
attributable to reductions in health risks associated with air pollution.  This Chapter describes individual
effects and the methods used to quantify and monetize changes in the expected number of incidences of
various health effects.

We estimate the incidence of adverse health effects using C-R functions based on PM and ozone. 
The changes in incidence of PM-related and ozone-related adverse health effects and corresponding
monetized benefits associated with these changes are estimated separately.  Exhibits 4-1 and 4-2 present
the PM- and ozone-related health endpoints included in the Base and Alternative Estimates.  Exhibit 4-3
presents the incidence rates used for these C-R functions.24  And Exhibit 4-4 presents the unit monetary
values for each of these endpoints.

Note also, that in some cases there are alternative and/or sensitivity endpoints, studies, or unit
dollar values that could be used in calculating the benefits of a change in pollution.  As appropriate, we
included these alternatives in Exhibits 4-1, 4-2, and 4-4.

 Below, we discuss for each endpoint issues relating to the calculation of changes in incidence,
the monetization of these changes, and the characterization of the uncertainty surrounding our estimates. 
For some of the endpoint-pollutant combinations, there are several epidemiological studies that have
estimated C-R functions.  In these cases, we pooled the information from the multiple studies.  That is, we
based the estimation of the change in incidence and the corresponding monetized value of that change on
a synthesis of the information from the available studies.  Appendix H gives a detailed description of the
pooling methods used in this analysis.
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Exhibit 4-1.  PM-Related Health Endpoints Used in Base and Alternative Estimates

Health Effect Applied
Ages 

Pollutant Description

Mortality

Long-term – Base
Estimate

30+ PM2.5 Krewski et al. (2000), reanalysis of Pope et al. (1995) using the annual
mean and all-cause mortality.

Short-term – Alternative
Estimate

All PM2.5 Schwartz et al. (1996) adjusted using ratio of distributed lag to single day
coefficients from Schwartz et al. (2000b).

Chronic Illness

Chronic bronchitis 27+ PM2.5 Abbey et al (1995c)

Non-fatal heart attacks PM2.5 Peters et al. (2001)

Hospital Admissions

Respiratory 65+ PM2.5 Pooled estimate: 
Moolgavkar (2000b) - ICD 490-496 (COPD)
Lippman et al. (2000) - ICD 490-496 (COPD)

20-64 PM2.5 Moolgavkar (2000b) - ICD 490-496 (COPD)

65+ PM2.5 Lippman et al. (2000) - ICD 480-486 (pneumonia)

<65 PM2.5 Sheppard, et al. (1999) - ICD 493 (asthma)

Cardiovascular 65+ PM2.5 Pooled estimate: 
Moolgavkar (2000a) - ICD 390-429 (all cardiovascular)
Lippman et al. (2000) - ICD 410-414, 427-428 (ischemic heart disease,
dysrhythmia, heart failure)

20-64 PM2.5 Moolgavkar (2000a) - ICD 390-429 (all cardiovascular)

Emergency Room Visits

Asthma ER Visits 0-18 PM2.5 Norris et al. (1999)

Other Health Effects

Acute bronchitis Ages 8-12 PM2.5 Dockery et al. (1996)

Upper respiratory
symptoms

Asthmatics,
ages 9-11

PM10 Pope et al. (1991)

Lower respiratory
symptoms

7-14 PM2.5 Schwartz (1994)

Work loss days 18-64 PM2.5 Ostro (1987)

Minor restricted activity
day

18-64 PM2.5 Ostro and Rothschild (1989), 
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Exhibit 4-2.  Ozone-Related Health Endpoints in Base and Alternative Estimates

Health Effect Applied
Ages 

Pollutant Description

Hospital Admissions

Respiratory 65+ O3 Pooled estimate:
Schwartz (1995) - ICD 460-519 (all resp)
Schwartz (1994a; 1994b) - ICD 480-486 (pneumonia)
Moolgavkar et al. (1997) - ICD 480-487 (pneumonia)
Schwartz (1994b) - ICD 491-492, 494-496 (COPD)
Moolgavkar et al (1997) - ICD 490-496 (COPD) 

<2 O3 Burnett et al. (2001)

Asthma-Related ER
Visits

All O3 Pooled estimate: 
Weisel et al. (1995)
Cody et al. (1992)
Stieb et al. (1996)

Other Health Effects

School Loss Days
 9-10 
6-11

O3 Pooled estimate:
Gilliland et al (2001)
Chen et al (2000)

Worker productivity 18-65 O3 Crocker and Horst (1981) and EPA (1994).  Applied to outdoor workers,
defined as those engaged in the farming, fishing, and forestry occupations.
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Exhibit 4-3.  Baseline Incidence Rates and Population Prevalence Rates in Base and Alternative
Estimates

Endpoint Notes
Rate per 100 people per year a by Age Group

<18 18-24 25-34 35-44 45-54 55-64 65+

Mortality all-cause 0.045 0.093 0.119 0.211 0.437 1.056 5.050

chronic-lung 0.000 0.001 0.001 0.002 0.009 0.046 0.278

Chronic Bronchitis c -- -- 0.378 0.378 0.378 0.378 0.378

prevalence b -- 3.70% 3.70% 3.70% 5.10% 5.10% 5.90%

Nonfatal MI (heart attacks) 0.000 0.002 0.012 0.089 0.305 0.654 1.442

Hospitalizations respiratory 0.043 0.084 0.206 0.678 1.926 4.389 11.629

cardiovascular 1.066 0.271 0.318 0.446 0.763 1.632 5.200

Asthma ER visits 1.011 1.087 0.751 0.438 0.352 0.425 0.232

Acute Bronchitis d 4.300 -- -- -- -- -- --

Lower Respiratory
Symptoms e

43.80 -- -- -- -- -- --

Upper Respiratory
Symptoms among asthmatic
children f

12479 -- -- -- -- -- --

Asthma g prevalence b 5.30% 3.70% 3.70% 3.70% 3.30% 3.30% 2.20%

Work Loss Days h -- 197.1 247.5 247.5 179.6 179.6 --

Minor Restricted Activity
Days i

-- 780.0 780.0 780.0 780.0 780.0 --

School Loss Days j all-cause 990.0 -- -- -- -- -- --

illness-related 281.1 -- -- -- -- -- --

respiratory
illness-related

152.1 -- -- -- -- -- --

a All of the rates reported here are population-weighted incidence rates per 100 people per year.  Appendix E provides further
details on the incidence and prevalence rates, as well as the sources for these rates.
b “Prevalence” refers to the percentage of the population that has a given adverse health effect (e.g., chronic bronchitis).  
c The chronic bronchitis incidence rate is calculated for ages 27 and up. The three chronic bronchitis prevalence rates are
calculated for ages 18 to 44, 44 to 64, and 65 up.
d The acute bronchitis incidence rate is calculated for ages 8 to 12.
e The lower respiratory symptoms incidence rate is calculated for ages 7 to 14.
f The upper respiratory symptoms incidence rate is calculated for ages 9 to 11.
g The four asthma prevalence rates are calculated for ages under 18, 18 to 44, 45 to 64, and 65 up.
h The three work loss days incidence rates are calculated for ages 18 to 24, 25 to 44, and 45 to 64.
i The minor restricted activity days incidence rate is calculated for ages 18 to 64.
j We estimated 180 school days in a year to calculate school absence rates per year.
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Exhibit 4-4.  Unit Values for Economic Valuation of Health Endpoints(2000 $)

Health Endpoint Description Mean Estimate a

Mortality b Base Estimate – VSL based on 26 studies $6.3 million per statistical life

Alternative Estimates – VSLY Age        at 3%        at 7%              
 <65       $172,000   $286,000
65+        $434,000   $527,000

Chronic Bronchitis Base Estimate – WTP $340,482 per case

Alternative Estimate –  COI Age         at 3%         at 7%              
27-44      $150,542    $86,026 per case
45-64      $97,610      $72,261 per case
65+         $11,088      $9,030  per case

Non-Fatal Heart Attacks -- Age         at 3%         at 7%              
0-24       $65,902       $65,293 per case
25-44     $74,676       $73,149 per case
45-54     $78,834       $76,871 per case
55-64     $140,649     $132,214 per case
65+        $65,902       $65,293 per case

Hospital Admissions all respiratory, ages 65+ $18,353 per admission

all respiratory, ages 0-2 $7,741   per admission

pneumonia, ages 65+ $17,802 per admission

COPD, ages 65+ $13,615 per admission

COPD , ages 20-64 $11,794 per admission

asthma, ages < 65 $7,771   per admission

all cardiovascular ages 65+ $21,162 per admission

all cardiovascular, ages 20-64 $22,754 per admission

ischemic heart disease, ages 65+ $25,848 per admission

dysrhythmias, ages 65+ $15,698 per admission

congestive heart failure, ages 65+ $15,185 per admission

Emergency Room Visits Asthma-related $286 per visit

Minor Effects Acute bronchitis $356 per case

Lower resp. Symptoms $15.57 per symptom-day

Upper resp. Symptoms $24.64 per symptom-day

 Minor restricted activity day (MRAD)  $50.55 per day

School loss days $75 per day

Work loss days County-specific median daily wage

Worker productivity Change in daily wages adjusted by regional variations
in income

a The derivation of each of the estimates is discussed in the text.  Entries in italics are not used in the base benefits analysis.
b Long-term exposure mortality was modeled as lagged, both in the base analysis and in the sensitivity analyses, as shown in
Exhibit 4-10.  The unit values shown here were adjusted to take this into account.  For example, the base analysis assumes that 25
percent of premature deaths occur in the first year, 25 percent occur in the second year, and 16.7 percent occur in each of the three
subsequent years after exposure.  The expected value of an individual’s avoided premature death is therefore (0.25 x the unit
value) + (0.25 x the unit value discounted back one year) + (16.7 x the unit value discounted back two years) +  (16.7 x the unit
value discounted back three years) +  (16.7 x the unit value discounted back four years).  This is true only for long-term exposure
mortality, regardless of which of the possible unit values listed above is used.
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4.1 Premature Mortality

Health researchers have consistently linked air pollution, especially PM, with excess mortality. 
Although a number of uncertainties remain to be addressed by continued research (National Research
Council, 1998), a substantial body of published scientific literature recognizes a correlation between
elevated PM concentrations and increased mortality rates.

Both long and short-term exposures to ambient levels of air pollution have been associated with
increased risk of premature mortality.  It is clearly an important health endpoint because of the size of the
mortality risk estimates, the serious nature of the effect itself, and the high monetary value ascribed to
avoiding mortality risk.  Because of the importance of this endpoint and the considerable uncertainty
among economists and policymakers as to the appropriate way to estimate mortality risks, this section
discusses some of the issues surrounding the estimation of premature mortality.

4.1.1 Calculating Incidence of Premature Mortality

Both long and short-term exposures to ambient levels of air pollution have been associated with
increased risk of premature mortality.  The size of the mortality risk estimates from these epidemiological
studies, the serious nature of the effect itself, and the high monetary value ascribed to prolonging life
make mortality risk reduction the most important health endpoint quantified in this analysis.  Because of
the importance of this endpoint and the considerable uncertainty among economists and policymakers as
to the appropriate way to value reductions in mortality risks, both a base and an alternative estimate are
provided.  As in the Kunzli et al. (2000) analysis, we focus on the prospective cohort long-term exposure
studies in deriving the C-R function for our base estimate of premature mortality. 

Epidemiological analyses have consistently linked air pollution, especially PM, with excess
mortality.  Although a number of uncertainties remain to be addressed by continued research (National
Research Council, 1998), a substantial body of published scientific literature documents the correlation
between elevated PM concentrations and increased mortality rates. Community epidemiological studies
that have used both short-term and long-term exposures and response have been used to estimate PM/
mortality relationships. Short-term studies use a time-series approach to relate short-term (often
day-to-day) changes in PM concentrations and changes in daily mortality rates up to several days after a
period of elevated PM concentrations.  Long-term studies examine the potential relationship between
community-level PM exposures over multiple years and community-level annual mortality rates.
Researchers have found statistically significant associations between PM and premature mortality using
both types of studies.  In general, the risk estimates based on the long-term exposure studies are larger
than those derived from short-term studies. Cohort analyses are better able to capture the full public
health impact of exposure to air pollution over time (Kunzli et al., 2001; National Research Council,
2002).  The alternative estimate is based on time-series studies demonstrating the effect of short-term
exposures.  This section discusses some of the issues surrounding the estimation of premature mortality.

Base Estimate: Long-term Studies

Over a dozen studies have found significant associations between various measures of long-term
exposure to PM and elevated rates of annual mortality, beginning with Lave and Seskin (1977).  Most of
the published studies found positive (but not always statistically significant) associations with available
PM indices such as total suspended particles (TSP). Particles of different fine particles components (i.e.
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sulfates), and fine particles, as well as exploration of alternative model specifications sometimes found
inconsistencies (e.g., Lipfert et al., 1989). These early "cross-sectional" studies (e.g., Lave and Seskin,
1977; Ozkaynak and Thurston, 1987) were criticized for a number of methodological limitations,
particularly for inadequate control at the individual level for variables that are potentially important in
causing mortality, such as wealth, smoking, and diet.  More recently, several long-term studies have been
published that use improved approaches and appear to be consistent with the earlier body of literature. 
These new "prospective cohort" studies reflect a significant improvement over the earlier work because
they include individual-level information with respect to health status and residence.

 The most extensive study and analyses has been based on data from two prospective cohort
groups, often referred to as the Harvard "Six-City study" (Dockery et al., 1993) and the "American
Cancer Society or ACS study" (Pope et al., 1995);  these studies have found consistent relationships
between fine particle indicators and premature mortality across multiple locations in the U.S.   A third
major data set comes from the California based 7th Day Adventist Study (e.g., Abbey et al., 1999), which
reported associations between long-term PM exposure and mortality in men.  Results from this cohort,
however, have been inconsistent and the air quality results are not geographically representative of most
of the US.  More recently, a cohort of adult male veterans diagnosed with hypertension has been
examined (Lipfert et al., 2000).  The characteristics of this group differ from the cohorts in the ACS, Six-
Cities, and 7th Day Adventist studies with respect to income, race, and smoking status.  Unlike previous
long-term analyses, this study found some associations between mortality and ozone but found
inconsistent results for PM indicators. 

Given their consistent results and broad geographic coverage, the Six-City and ACS data have
been of particular importance in benefits analyses.   The credibility of these two studies is further
enhanced by the fact that they were subject to extensive reexamination and reanalysis by an independent
team of scientific experts commissioned by the Health Effects Institute (Krewski et al., 2000).   The final
results of the reanalysis were then independently peer reviewed by a Special Panel of the HEI Health
Review Committee. The results of these reanalyses confirmed and expanded those of the original
investigators.  This intensive independent reanalysis effort was occasioned both by the importance of the
original findings as well as concerns that the underlying individual health effects information has never
been made publicly available.  

The HEI re-examination lends credibility to the original studies as well as highlighting
sensitivities concerning (a) the relative impact of various pollutants, (b) the potential role of education in
mediating the association between pollution and mortality, and (c) the influence of spatial correlation
modeling.  Further confirmation and extension of the overall findings using more recent air quality and a
longer follow up period for the ACS cohort was recently published in the Journal of the American
Medical Association (Pope et al., 2002).

In developing and improving the methods for estimating and valuing the potential reductions in
mortality risk over the years, EPA has consulted with a panel of the Science Advisory Board.  That panel
recommended use of long-term prospective cohort studies in estimating mortality risk reduction (U.S.
EPA, 1999a).   This recommendation has been confirmed by a recent report from the National Research
Council, which stated that “it is essential to use the cohort studies in benefits analysis to capture all
important effects from air pollution exposure (National Research Council, 2002, p. 108).” More
specifically, the SAB recommended emphasis on the ACS study because it includes a much larger sample
size and longer exposure interval, and covers more locations (e.g. 50 cities compared to the Six Cities
Study) than other studies of its kind.  As explained in the regulatory impact analysis for the Heavy-Duty
Engine/Diesel Fuel rule (U.S. EPA, 2000c), more recent EPA benefits analyses have relied on an
improved specification of the ACS cohort data that was developed in the HEI reanalysis (Krewski et al.,
2000).  The particular specification yielded a relative risk based on changes in mean levels of PM2.5, as



25  For policy analysis purposes, functions based on the mean air quality levels may be preferable to functions based on the median
air quality levels because changes in the mean more accurately reflect changes in peak values than do changes in the median. 
Policies which affect peak PM days more than average PM days will result in a larger change in the mean than in the median.  In
these cases, all else being equal, C-R functions based on median PM2.5 will lead to lower estimates of avoided incidences of
premature mortality than C-R functions based on mean PM2.5. 
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opposed to the specification in the original study, which reported a relative risk based on median levels25. 
The Krewski et al analysis also includes a broader geographic scope than the original study (63 cities
versus 50).  Specifically, the relative risk from which the Base estimate is derived is 1.12 per 24.5 :g/m3

for all-cause mortality (see: Part II page 173 Table 31 in Krewski et al., 2000).  The SAB has recently
agreed with EPA's selection of this specification for use in analyzing mortality benefits of PM reductions
(U.S. EPA, 2001). 

Alternative Estimate: Short-term Studies

To reflect concerns about the more limited number of cohort studies that examine the association
between long-term exposure and mortality and the inherent limitations for drawing conclusions regarding
causality from these studies, especially the ecological measure of exposure used, a plausible alternative to
the base benefit estimate is provided.  This estimate was derived from the larger number of time-series
studies, the body of which have established a likely causal relationship between short-term measures of
PM and daily mortality statistics.   A particular strength of the design of these studies for drawing
conclusions about causality is the fact that potential confounding variables such as socio-economic status,
occupation, and smoking do not vary on a day-to-day basis in an individual area.  A number of multi-city
and other types of studies strongly suggest that these short term PM exposure-premature mortality
relationships cannot be explained by weather, statistical approaches, or other pollutants. 

The fact that the PM-mortality coefficients from the cohort studies are far larger than the
coefficients derived from the daily time-series studies provides some evidence for an independent chronic
effect of PM pollution on health.  Indeed, the Base Estimate presumes that the larger coefficients
represent a more complete accounting of mortality effects, including both the cumulative total of
short-term mortality as well as an additional chronic effect.  This is, however, not the only possible
interpretation of the disparity.  Various reviewers have argued that 1) the long-term estimates may be
biased high and/or 2) the short-term estimates may be biased low.   In this view, the two study types could
be measuring the same underlying relationship.  

With respect to possible sources of upward bias in the long-term studies, HEI reviewers have
noted that the less robust estimates based on the Six-Cities Study are significantly higher than those based
on the more broadly distributed ACS data sets. Some reviewers have also noted that the observed
mortality associations from the 1980's and 90's may reflect higher pollution exposures from the 1950's to
1960's.   Such an argument is consistent with the dramatic decrease in PM levels over the last 50 years, as
long as the relative differences in PM among the cities did not change. Indeed, Pope et al. (2002)
demonstrated that the relative differences in pollution levels among the cities was similar between the
years 1979-1980 and the years 1999-1980.  If the lower PM exposures today pose disproportionately less
risk than the exposures of the 1950's-1960's, then the base mortality estimate may be biased upwards. 
While this would bias estimates based on more recent pollution levels upwards, it also would imply a
truly long-term chronic effect of pollution, at least for the higher exposure levels.

With regard to possible sources of downward bias, it is of note that the recent studies suggest that
the single day time series studies may understate the short-term effect on the order of a factor of two
(Zanobetti et al., 2002).  Previous daily mortality studies (Schwartz et al., 1996) examined the impact of
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PM2.5 on mortality on a single day or over the average of two or more days.  Although the risk estimates
from the vast majority of the short-term studies include the effects of only one or two-day exposure to air
pollution, more recently, several studies have found that the practice of examining the effects on a single
day basis may significantly understate the risk of short-term exposures (Schwartz, 2000a; Zanobetti et al.,
2002).  These studies suggest that the short-term risk can double when the single-day effects are
combined with the cumulative impact of exposures over multiple days to weeks prior to a mortality event.
Multi-day models are often referred to as "distributed lag" models because they assume that mortality
following a PM event will be distributed over a number of days following or "lagging" the PM event. The
size of the effect estimates from these models suggests consistency between the findings of studies that
examine premature mortality impacts of short-term and long-term exposures.  Additional research may be
necessary to confirm this trend.

The United Kingdom's Committee on the Medical Effects of Air Pollution (2001) evaluated the
various models proposed by Krewski et al. (2000).  In the judgment of the COMEAP, as published in it’s
“Statement on the Long-term Effects of Particles on Mortality,” it is more appropriate to develop a “range
of estimates along with  comments on their confidence in them” than selecting a single estimate of
possible effects.  The inclusion of an Alternative Estimate, as well as the sensitivity analyses presented in
Appendix 9B is an appropriate response to this suggestion.

These considerations provide a basis for considering an Alternative Estimate using the most
recent estimates from the wealth of time-series studies, in addition to the Base Estimate based on the
long-term cohort studies.  In essence, the Alternative Estimate offers an approach to characterizing some
of the uncertainties in the relationship between premature mortality and exposures to ambient levels of
fine particles by assuming that there is no mortality effect of chronic exposures to fine particles.  Instead,
it assumes that the full impact of fine particles on premature mortality is captured using a
concentration-response function relating daily mortality to short-term fine particle levels. This will clearly
provide a lower bound to the mortality impacts of fine particle exposure, as it omits any additional
mortality impacts from longer term exposures.

There are no PM2.5 daily mortality studies which report numeric estimates of relative risks from
distributed lag models; only PM10 studies are available.  Daily mortality C-R functions for PM10 are
consistently lower in magnitude than PM2.5-mortality C-R functions, because fine particles are believed to
be more closely associated with mortality than the coarse fraction of PM.  Given that the emissions
reductions under the Nonroad Diesel Engine program result primarily in reduced ambient concentrations
of PM2.5, use of a PM10 based C-R function results in a significant downward bias in the estimated
reductions in mortality. 

The Alternative Estimate is based on a concentration- response function derived from Schwartz et
al. (1996), with an adjustment to account for recent evidence that daily mortality is associated with
particle levels from a number of previous days (Schwartz, 2000b).  Specifically, to account for the full
potential multi-day mortality impact of acute PM2.5 events, we use the distributed lag model for PM10
reported in Schwartz (2000b) develop an adjustment factor which we then apply to the PM2.5 based C-R
function reported in Schwartz et al. (1996).

If most of the increase in mortality is expected to be associated with the fine fraction of PM10,
then it is reasonable to assume that the same proportional increase in risk would be observed if a
distributed lag model were applied to the PM2.5 data.  The distributed lag adjustment factor is constructed
as the ratio of the estimated coefficient from the unconstrained distributed lag model to the estimated
coefficient from the single-lag model reported in Schwartz (2000b).  The unconstrained distributed lag
model coefficient estimate is 0.0012818 and the single-lag model coefficient estimate is 0.0006479.  The
ratio of these estimates is 1.9784.  This adjustment factor is then multiplied by the estimated coefficients



26  The 40% smaller estimate is also consistent with a judgment offered by COMEAP based on its review of the use of U.S. cohort
studies in a European context.  The alternative estimate of premature mortality is similar in magnitude to their judgement of a
“likely” estimate, based on a sensitivity analysis included in the Krewski et al (2000) reanalysis of the ACS cohort data.  That
sensitivity analysis was based on a much smaller set of cities and  included SO2 and other variables as controls.   In addition to
PM2.5, this specification found a significant impact of SO2 on mortality.  SO2 and PM2.5 levels are at least somewhat correlated, so
it is not clear in a multi-pollutant specification how much of the SO2 effect is capturing some of the PM2.5 signal and vice versa. 
An appropriate comparison would be between the COMEAP estimate and the total mortality impact of the nonroad rule predicted
using both the PM2.5 and SO2 changes.  Comparing PM2.5 related mortality generated from a single pollutant mortality function
with a multi-pollutant specification  ignores the implied benefits of SO2 reductions under the rule.  Thus it is likely that the
COMEAP estimate would understate the total mortality impacts likely to be associated with the proposed nonroad rule.
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from the Schwartz et al. (1996) study.  There are two relevant coefficients from the Schwartz et al. study,
one corresponding to all-cause mortality, and one corresponding to chronic obstructive pulmonary disease
(COPD) mortality (separation by cause is necessary to implement the life years lost approach detailed
below).  The adjusted estimates for these two C-R functions are:

All cause mortality =  0.001489 * 1.9784 = 0.002946

COPD mortality =  0.003246 * 1.9784 = 0.006422

Note that these estimates, while approximating the full impact of daily pollution levels on daily
death counts, do not capture any impacts of long-term exposure to air pollution. As discussed earlier,
EPA's Science Advisory Board, while acknowledging the uncertainties in estimation of a PM-mortality
relationship, has repeatedly recommended the use of a study that does reflect the impacts of long-term
exposure.  This recommendation has been confirmed by the recent NRC (2002) report on estimating
health benefits of air pollution regulations.  The omission of long-term impacts accounts for
approximately a 40 percent reduction in the estimate of avoided premature mortality in the Alternative
Estimate relative to the Base Estimate.  For comparison, an estimate calculated using the lower
confidence interval of the Base estimate C-R function coefficient would fall between these two estimates
(i.e., the lower confidence interval on the RR of 1.12 used in the Base Estimate is 1.06, translating to a
coefficient estimate of 0.002).26 In summary, the alternative estimate has a technical foundation in both a
plausible interpretation of the cohort studies and the time-series studies that incorporate the longer lag
periods.

4.1.2 Valuing Premature Mortality

We used two methods to value avoided premature mortality.  In the Base Estimate we used the
“statistical lives lost” approach, which derives the value of a “statistical life” lost from information about
what people are willing to pay for mortal risk reduction.  In the Alternative Estimate, we take into account
that an individual’s willingness to pay for mortal risk reduction may depend on his age and remaining life
expectancy, using a "statistical life years lost" approach.

Base Estimate: Statistical Lives Lost

Following the advice of the EPA Science Advisory Board (2000a), we calculated the monetary
benefits of reducing premature mortality risk using the “value of statistical lives” (VSL) approach, which
is a summary measure for the value of small changes in mortality risk experienced by a large number of
people.  The VSL approach applies information from several published value-of-life studies to determine
a reasonable benefit of preventing premature mortality.  The unit value of avoiding one statistical death is
estimated to be $6.3 million (in 2000 $).  This represents an intermediate value from 26 estimates that



27   The choice of a discount rate, and its associated conceptual basis, is a topic of ongoing discussion within the federal government. 
EPA adopted a 3 percent discount rate for its base estimate in this case to reflect reliance on a “social rate of time preference”
discounting concept.  We have also calculated benefits and costs using a 7 percent rate consistent with an “opportunity cost of
capital” concept to reflect the time value of resources directed to meet regulatory requirements.  In this case, the benefit and cost
estimates were not significantly affected by the choice of discount rate.  Further discussion of this topic appears in EPA’s (2000e)
Guidelines for Preparing Economic Analyses.
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appear in the economics literature, and it is a value EPA has frequently used in RIAs for other rules (e.g.,
U.S. EPA, 2000c) and in the Section 812 Reports to Congress (U.S. EPA, 1999b).

This estimate is the mean of a Weibull distribution fitted to the estimates from 26 value-of-life
studies identified in the Section 812 reports as “applicable to policy analysis.”  The approach and set of
selected studies mirrors that of Viscusi (1992) in his review of value-of-life studies, and uses his same
criteria.  The $6.3 million estimate is consistent with Viscusi’s conclusion (updated to 2000$) that “most
of the reasonable estimates of the value of life are clustered in the $3.8 to $8.9 million range.”  

Exhibit 4-5 presents the 26 studies that we used.  Five of the 26 studies are contingent valuation
(CV) studies, which directly solicit WTP information from subjects; the rest are wage-risk studies, which
base WTP estimates on estimates of the additional compensation demanded in the labor market for riskier
jobs.  As indicated in the previous section on calculating the incidence of avoided premature mortality,
we assumed that the incidences of premature mortality related to PM exposures occur in a distributed
fashion over the five years following exposure.  To take this into account in the valuation of reductions in
premature mortality, we applied an annual discount rate to the value of premature mortality occurring in
future years.27  And to allow for some uncertainty regarding the appropriate discount rate, we used rates
of three percent and seven percent.
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Exhibit 4-5.  Summary of Mortality Valuation Estimates

Study Type of Estimate Valuation 
(millions 2000 $)

Kneisner and Leeth (1991) (US) Labor Market 0.8

Smith and Gilbert (1984) Labor Market 0.9

Dillingham (1985) Labor Market 1.2

Butler (1983) Labor Market 1.4

Miller and Guria (1991) Contingent Valuation 1.6

Moore and Viscusi (1988) Labor Market 3.3

Viscusi et al. (1991) Contingent Valuation 3.6

Gegax et al. (1985; 1991) Contingent Valuation 4.3

Marin and Psacharopoulos (1982) Labor Market 3.7

Kneisner and Leeth (1991) (Australia) Labor Market 4.3

Gerking et al. (1988) Contingent Valuation 4.5

Cousineau et al. (1988; 1992) Labor Market 4.7

Jones-Lee (1989) Contingent Valuation 5.0

Dillingham (1985) Labor Market 5.1

Viscusi (1978; 1979) Labor Market 5.4

R.S. Smith (1976) Labor Market 6.1

V.K. Smith (1983) Labor Market 6.2

Olson (1981) Labor Market 6.9

Viscusi (1981) Labor Market 8.6

R.S. Smith (1974) Labor Market 9.5

Moore and Viscusi (1988) Labor Market 9.6

Kneisner and Leeth (1991) (Japan) Labor Market 10.0

Herzog and Schlottman (1987; 1990) Labor Market 12.0

Leigh and Folson (1984) Labor Market 12.8

Leigh (1987) Labor Market 13.7

Garen (1988) Labor Market 17.8

Source: The references for all but Gegax et al. (1985) and V.K. Smith (1983) may be found in Viscusi (1992).

The uncertainty surrounding the estimate of $6.3 million per statistical life is modeled by the
Weibull distribution of which this is the mean.  As discussed in detail below, there has been considerable
discussion about the appropriateness of the 26 value-of-life studies from which the base estimate is
derived to the air pollution context.  Some of the underlying uncertainty surrounding this estimate is
therefore not captured by the Weibull distribution fitted to these 26 values.  We have attempted to address
this, to some degree, in the alternative estimate.

Alternative Estimates: Age-Adjusted Life Years Lost

The Alternative Estimate reflects the impact of changes to key assumptions associated with the
valuation of mortality.  These include: 1) the impact of using wage-risk and contingent valuation-based
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value of statistical life estimates in valuing risk reductions from air pollution as opposed to contingent
valuation-based estimates alone, 2) the use of a value of statistical life years approach as opposed to a
VSL approach, and 3) the degree of prematurity (number of life years lost) for mortalities from air
pollution.

The Alternative Estimate addresses the first issue by using an estimate of the value of statistical
life that is based only on the set of five contingent valuation studies included in the larger set of 26 studies
recommended by Viscusi (1992) as applicable to policy analysis.  The mean of the five contingent
valuation based VSL estimates is $3.7 million (2000$), which is approximately 60 percent of the mean
value of the full set of 26 studies.  Note that because these are deaths associated with short-term
exposures to PM2.5, it is assumed that there is no lag between reduced exposure and reduced risk of
mortality.  Sensitivity analyses exploring the implications for the alternative estimate of using different
starting VSL estimates are presented in Appendix 9B.

While the base estimate is based on a VSL approach, the alternative estimate is based on the
number of years of life saved and economic value of saving a statistical life year (VSLY). The VSLY
approach has been developed in the peer-reviewed economics literature (e.g., Viscusi and Moore, 1989)
and has been applied for many years by the U.S. Food and Drug Administration. Some recent analyses,
however, have raised concerns about the use of this method to value reductions in premature mortality in
an environmental context (e.g., Krupnick, 2002).  The VSLY approach applied in this RIA recognizes
that each year late in the life span may have a higher monetary value than the average life year saved in
the middle of the life span.  The non-constant VSLY, rising later in the lifespan, is qualitatively
compatible with theoretical economic models of an individual's demand for lifesaving as a function of age
(Shepard and Zeckhauser, 1984).  The conceptional rationale for a premium on VSLY among the elderly
is that they have saved through their working lifetimes and accumulated assets that can be devoted to
health protection, and have rising baseline risks, which increase the marginal value of risk reductions
(Pratt and Zeckhauser, 1996).

Under the alternative approach, the value of a life year for younger individuals is calculated as if
they had an average life expectancy.  However, instead of attempting to estimate the remaining life
expectancy for different age groups, we have assumed that everyone who dies from exposure to air
pollution loses five years of life.  Because we assume that younger individuals do not have the
accumulated assets or do not adjust the value of life years to reflect reductions in life expectancy, this
approach implies that the total value of a five-year loss in life years is greater for the elderly than for
younger individuals. An additional limitation of this approach is the discontinuity at age 65.  A more
complex approach would produce a continuous VSLY curve; however, the empirical data required to
specify these models are not available.

There is no latency period assumed in the alternative analysis since the premature deaths are
assumed to occur primarily among persons with chronic disease who experience short-term elevations in
daily air pollution levels.  Even the latency periods associated with the distributed lag models are too
short to be of significance in the valuation process.

In order to implement the non-constant VSLY approach, we begin by using a VSL of $3.7
million based on five contingent valuation studies which were also considered as part of the base
estimate.  This smaller VSL is also consistent with an alternative interpretation of the wage-risk literature
(Mrozek and Taylor, 2002).  For persons under age 65, the $3.7 million VSL is assumed to reflect an
average loss of 35 years.  The VSLY associated with $3.7 million VSL is $172,000, annualized using a 3
percent discount rate, or $286,000, annualized using a 7 percent discount rate.  Note that the larger
discount rate increases the VSLY because at a higher discount rate, a larger stream of VSLY is required to
yield a VSL of $3.7 million.  For those over age 65, the VSLY is derived from a $3.7 million VSL and an
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assumed 10-year life expectancy.  This gives a VSLY of $434,000 at a 3 % discount rate of a $527,000 at
a 7% discount rate. 

The alternative estimate also assumes that deaths from chronic obstructive pulmonary disease
(COPD) are advanced by 6 months, and deaths from all other causes are advanced by 5 years.  As a first
approximation, these reductions in life years lost are applied regardless of the age at death.  Actuarial
evidence suggests that individuals with serious preexisting cardiovascular conditions have an average
remaining life expectancy of around 5 years.  While many deaths from daily exposure to PM may occur
in individuals with cardiovascular disease, studies have shown relationships between all cause mortality
and PM, and between PM and mortality from pneumonia (Schwartz, 2000a).  In addition, recent studies
have shown a relationship between PM and non-fatal heart attacks, which suggests that some of the
deaths due to PM may be due to fatal heart attacks (Peters et al., 2001).  And, a recent meta-analysis has
shown little effect of age on the relative risk from PM exposure (Stieb et al., 2002).  The alternative
estimate suggests that the number of deaths in non-elderly populations that 21 percent of non-COPD
premature deaths avoided are in populations under 65 (with the possibility for greater loss of life years in
this age group).  Thus, while the assumption of 5 years of life lost may be appropriate for a subset of total
avoided premature mortalities, it may overestimate or underestimate the degree of life shortening
attributable to PM for the remaining deaths.

Monetized estimates of the benefits of a reduction in premature mortality are calculated as
follows.  First, the expected reduction in premature mortality by age category (over 65 and under 65) is
multiplied by the assumed gain in additional discounted life years for the two disease categories (COPD
and non-COPD) to obtain an estimate of the additional discounted life-years associated with the reduction
in PM exposures.  No adjustment is made for the quality of life-years saved.  The monetized benefit
estimate for a reduction in premature mortality, then, is the product of the additional discounted life-years
times the calculated VSLY.  

Uncertainties Specific to Premature Mortality Valuation

The economic benefits associated with premature mortality are typically the largest category of
monetized benefits, as well as the largest contributor to the range of uncertainty in monetized benefits
(see U.S. EPA, 1999b, p.107).  Because of the uncertainty in estimates of the value of premature mortality
avoidance, it is important to adequately characterize and understand the various types of economic
approaches available for mortality valuation.  Such an assessment also requires an understanding of how
alternative valuation approaches reflect the fact that some individuals may be more susceptible to air
pollution-induced mortality, or reflect differences in the nature of the risk presented by air pollution
relative to the risks studied in the relevant economic literature.

The health science literature on air pollution indicates that several human characteristics affect
mortality risks.  For example, some age groups appear to be more susceptible to air pollution than others
(e.g., the elderly and children).  Health status prior to exposure also affects susceptibility.  At-risk
individuals include those who have suffered strokes or are suffering from cardiovascular disease and
angina (Rowlatt et al., 1998).  

An ideal benefits estimate of mortality risk reduction would reflect these human characteristics, in
addition to individuals’ WTP to improve their own chances of survival plus WTP to improve other
individuals' survival rates.  The ideal measure would also take into account the specific nature of the risk
reduction, as well as the context in which risk is reduced.  To measure the value of a risk reduction, it is
important to assess how reductions in air pollution reduce the risk of dying from the time that reductions
take effect onward, and how individuals value these changes.  Each individual's survival curve, or the
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probability of surviving beyond a given age, should shift as a result of an environmental quality
improvement.  Changing the current probability of survival for an individual also shifts future
probabilities of that individual's survival.  This survival curve shift will differ across individuals because
survival curves are dependent on such characteristics as age, health state, and the current age to which the
individual is likely to survive.

Although a survival curve approach may be the theoretically preferred method for valuing the
benefits of reduced risk of premature mortality associated with reducing air pollution, the approach
requires a great deal of data to implement.  The economic valuation literature does not yet include good
estimates of the value of this risk reduction commodity.  As a result, in this study we valued avoided
premature mortality risk using the value of statistical life approach in the Base Estimate, supplemented by
valuation based on an age-adjusted value of statistical life estimates in the Alternative Estimate.

Some economists emphasize that the value of a statistical life is not a single number relevant for
all situations.  Indeed, the VSL estimate of $6.3 million (2000 dollars), used in the Base Estimate, is itself
the central tendency of a number of estimates of the VSL for some rather narrowly defined populations. 
Because there are significant differences between the population affected by a particular health risk and
the populations used in the labor market studies, as is the case here, some economists prefer to adjust the
VSL estimate to reflect those differences.  Exhibit 4-7 discusses some of the approaches that have been
proposed for valuing reductions in mortality risk. 

Exhibit 4-7.  Alternative Approaches for Assessing the Value of Reduced Mortality Risk

Stated preference studies – These studies use survey responses to estimate WTP to avoid risks.  Strengths: flexible approach
allowing for appropriate risk context, good data on WTP for individuals.  Weaknesses: risk information may not be well-
understood by respondents and questions may be unfamiliar. 

Consumer market studies – These studies use consumer purchases and risk data (e.g., smoke detectors) to estimate WTP to
avoid risks.  Strengths: uses revealed preferences and is a flexible approach.  Weaknesses: very difficult to estimate both risk
and purchase variables.

Value of statistical life year (VSLY) – Provides an annual equivalent to value of statistical life estimates.  Strengths: provides
financially accurate adjustment for age at death.  Weaknesses: adjustment may not reflect how individuals consider life-years;
assumes equal value for all remaining life-years.

Quality adjusted life year – Applies quality of life adjustment to life-extension data, uses cost-effectiveness data to value. 
Strengths: widely used in public health literature to assess private medical interventions.  Weaknesses: lack of data on health
state indices and life quality adjustments that are applicable to an air pollution context.  Similar to VSLY, adjustment may not
reflect how individuals consider life-years, and typically assumes an equal value for all remaining life-years despite evidence to
the contrary.

WTP for a change in survival curve – Reflects WTP for change in risk, potentially incorporates age-specific nature of risk
reduction.  Strengths: theoretically preferred approach that most accurately reflects risk reductions from air pollution control. 
Weaknesses: almost no empirical literature available; difficulty in obtaining reliable values.

WTP for a change in longevity – Uses stated preference approach to generate WTP for longevity or longer life expectancy. 
Strengths: life expectancy is a familiar term to most individuals.  Weaknesses: does not incorporate age-specific risk
information; problems in adapting to air pollution context.

Cost-effectiveness – Determines the implicit cost of saving a life or life-year.  Strengths: widely used in public health contexts. 
Weaknesses: health context is for private goods, dollar values do not necessarily reflect individual preferences.
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In the Base Estimate we estimate the monetary benefits of avoided premature mortality using the
results of 26 studies of the value of mortal risks.  However, there is considerable uncertainty as to whether
the 26 studies on the value of a statistical life provide adequate estimates of the value of a statistical life
saved by air pollution reduction.  Most of the studies examined differences in wages of risky occupations,
using a wage-hedonic approach.  The characteristics of the typical hedonic study population, and the risks
they face, may cause their average WTP to reduce risk to differ from the population affected by air
pollution.  The appropriateness of using these 26 studies depends on at least two key factors: the extent to
which the risks being valued are similar to the risks of air pollution; and, the extent to which the study
population is similar to the population affected by changes in pollution concentrations.

Level of Risk Reduction.  The transferability of estimates of the value of a statistical life from
the 26 studies to this analysis rests on the assumption that, within a reasonable range, WTP for reductions
in mortality risk is linear in risk reduction.  For example, suppose a study estimates that the average WTP
for a reduction in mortality risk of 1/100,000 is $50, but that the actual mortality risk reduction resulting
from a given pollutant reduction is 1/10,000.  If WTP for reductions in mortality risk is linear in risk
reduction, then a WTP of $50 for a reduction of 1/100,000 implies a WTP of $500 for a risk reduction of
1/10,000 (which is ten times the risk reduction valued in the study).  Under the assumption of linearity,
the estimate of the value of a statistical life does not depend on the particular amount of risk reduction
being valued.  This assumption has been shown to be reasonable provided the change in the risk being
valued is within the range of risks evaluated in the underlying studies (Rowlatt et al., 1998).

Age.  Compared with the subjects in wage-risk studies, the population believed to receive the
greatest mortality risk reduction associated in this analysis is, on average, older and probably more risk
averse.  Schwartz and Dockery (1992) and Ostro et al. (1996), Chestnut (1995) estimated that
approximately 85 percent of those who die prematurely from ambient air pollution-related causes are over
65.  However, the average age of subjects in wage-risk studies, in contrast, is well under 65.

It could be argued that, because an older person has fewer expected years left to lose, his WTP to
reduce mortality risk would be less than that of a younger person.  This hypothesis is supported by one
empirical study, Jones-Lee et al.(1985), that found the value of a statistical life at age 65 to be about 90
percent of what it is at age 40.  Citing the evidence provided by Jones-Lee et al., Chestnut (1995)
assumed that the value of a statistical life for those 65 and over is 75 percent of what it is for those under
65.  However, the direction of bias resulting from the age difference is unclear, particularly because age is
confounded by risk aversion (relative to the general population). 

The relationship between age and willingness to pay for mortality risk reductions has been the
subject of much research over the past several years.  Recent research in the U.S. has not found a
significant reduction in WTP for risk reductions in older populations (Alberini et al., 2002; Smith et al.,
forthcoming).  Studies outside of the U.S. have found a significant reduction in WTP for older
individuals, ranging from 10 percent (Jones-Lee et al., 1993) to around 35 percent (Alberini et al., 2002)
for a 70 year old, relative to a 40 year old.   Around 80 percent of the deaths projected to be avoided from
reduced exposure to PM in 2020 and 2030 are in populations over 65.  As such, the assumption that
populations of all ages have the same VSL can have a significant impact on the total benefits.

The age-WTP relationship based on Jones-Lee (1989), as summarized in U.S. EPA (U.S. EPA,
2000d), suggests a steep inverted U shape between age and VSL, with the VSL for a 70 year old at 63
percent of that for a 40 year old, and the VSL for an 85 year old at 7 percent of that for 40 year old.  The
relationship based on Jones-Lee (1993) and summarized in U.S. EPA (2000d), suggests a much flatter
inverted U shape, with the VSL for a 70 year old at 92 percent of that for a 40 year old, and the VSL for
an 85 year old at 82 percent of that for a 40 year old. Recent analyses conducted in Canada and the U.S.
by Krupnick et al. (Krupnick et al., 2002) found mixed results.  The Canadian analysis found around a 35
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percent reduction in VSL for respondents over age 70, but the U.S. analysis found no significant
differences in VSL across ages.  The wide range of age-adjustment ratios, especially at older ages
demonstrates the difficulty in making these kinds of adjustments.  We note that our Base estimate is the
most consistent with current evidence on U.S. preferences for risk reduction in older populations.

Risk Aversion. There is reason to believe that those over 65 are, in general, more risk averse than
the general population while workers in wage-risk studies are likely to be less risk averse than the general
population.  Although Viscusi’s (1992) list of recommended studies excludes studies that consider only
much-higher-than-average occupational risks, there is nevertheless likely to be some selection bias in the
remaining studies -- that is, these studies are likely to be based on samples of workers who are, on
average, more risk-loving than the general population.  In contrast, older people as a group exhibit more
risk averse behavior.

Citing Ehrlich and Chuma (1990), Industrial Economics Inc. (1992) noted that “older persons,
who as a group tend to avoid health risks associated with drinking, smoking, and reckless driving, reveal
a greater demand for reducing mortality risks and hence have a greater implicit value of a life year.”  That
is, the more risk averse behavior of older individuals suggests a greater WTP to reduce mortality risk.

Income.  In addition, it might be argued that because the elderly have greater average wealth than
those younger, the affected population is also wealthier, on average, than wage-risk study subjects, who
tend to be blue collar workers.  It is possible, however, that among the elderly it is largely the poor elderly
who are most vulnerable to air pollution-related mortality risk (e.g., because of generally poorer health
care).  If this is the case, the average wealth of those affected by a reduction in air concentrations relative
to that of subjects in wage-risk studies is uncertain.  

Economic theory argues that WTP for most goods (such as environmental protection) will
increase if real incomes increase.  There is substantial evidence that the income elasticity of WTP for
health risk reductions is positive (Loehman and De, 1982; Jones-Lee et al., 1985; Mitchell and Carson,
1986; Gerking et al., 1988; Alberini et al., 1997).  However, there is uncertainty about the exact value of
this elasticity.

As real income increases the WTP for environmental improvements also increases.  While many
analyses assume that the income elasticity of WTP is unit elastic (i.e., ten percent higher real income level
implies a ten percent higher WTP to reduce risk changes), empirical evidence suggests that income
elasticity is substantially less than one and thus relatively inelastic.  As real income rises, the WTP value
also rises but at a slower rate than real income.  Individuals with higher incomes (or greater wealth)
should, then, be willing to pay more to reduce risk, all else equal, than individuals with lower incomes or
wealth.  Whether the average income or level of wealth of the population affected by ambient air
pollution reductions is likely to be significantly different from that of subjects in wage-risk studies,
however, is unclear.

The effects of real income changes on WTP estimates can influence benefit estimates in two
different ways: (1) through real income growth between the year a WTP study was conducted and the
year for which benefits are estimated, and (2) through differences in income between study populations
and the affected populations at a particular time.  Empirical evidence of the effect of real income on WTP
gathered to date is based on studies examining the former.  The Environmental Economics Advisory
Committee (EEAC) of the SAB advised EPA to adjust WTP for increases in real income over time, but
not to adjust WTP to account for cross-sectional income differences "because of the sensitivity of making
such distinctions, and because of insufficient evidence available at present" (U.S. EPA, 2000a).
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Voluntary versus Involuntary Risk.  Although there may be several ways in which job-related
mortality risks differ from air pollution-related mortality risks, the most important difference may be that
job-related risks are incurred voluntarily whereas air pollution-related risks are incurred involuntarily. 
There is some evidence that people will pay more to reduce involuntarily incurred risks than risks
incurred voluntarily (e.g., Violette and Chestnut, 1983).  Job-related risks are incurred voluntarily
whereas air pollution-related risks are incurred involuntarily.  If this is the case, WTP estimates based on
wage-risk studies may be downward biased estimates of WTP to reduce involuntarily incurred ambient air
pollution-related mortality risks.

Catastrophic versus Protracted Death.  A final important difference related to the nature of the
risk may be that some workplace mortality risks tend to involve sudden, catastrophic events, whereas air
pollution-related risks tend to involve longer periods of disease and suffering prior to death.  Some
evidence suggests that WTP to avoid a risk of a protracted death involving prolonged suffering and loss
of dignity and personal control is greater than the WTP to avoid a risk (of identical magnitude) of sudden
death.  To the extent that the mortality risks addressed in this assessment are associated with longer
periods of illness or greater pain and suffering than are the risks addressed in the valuation literature, the
WTP measurements employed in the present analysis would reflect a downward bias.

The potential sources of bias in an estimate of mean WTP to reduce the risk of air pollution
related mortality based on wage-risk studies are summarized in Exhibit 4-8.  Although most of the
individual factors tend to have a downward bias, the overall effect of these biases is unclear.

Exhibit 4-8.  Potential Sources of Bias in Estimates of Mean WTP to Reduce the Risk of PM
Related Mortality Based on Wage-Risk Studies

Factor Likely Direction of Bias in Mean WTP Estimate

Level of Risk None

Age Uncertain, perhaps overestimate

Attitudes toward risk Underestimate

Income Uncertain

Voluntary versus Involuntary Uncertain, perhaps underestimate

Catastrophic versus Protracted Death Uncertain, perhaps underestimate

4.1.3 Sensitivity Calculations for Premature Mortality

We conducted a variety of sensitivity calculations regarding premature mortality.  We considered
the impact of alternative C-R examining the relationship between long-term PM2.5 exposure and
premature mortality.  We considered alternative lag structures.  And, we considered the potential impact
of an effects threshold.  In addition, we estimated ozone-related mortality, and the impact of PM on infant
mortality.

Sensitivity Calculation: Alternative C-R Functions for Long-Term PM2.5-Related Premature
Mortality
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Although we use the Krewski et al. (2000) mean-based all-cause model exclusively to derive our
Base Estimate of avoided premature mortality, we also examined the impacts of selecting alternative C-R
functions for premature mortality.  Exhibit 4-9 summarizes the alternative C-R functions that we used
from the original ACS study by Pope et al. (1995) and from the “Harvard Six-City Study” by Dockery et
al. (1993), as well as the recent reanalyses by Krewski et al. (2000) and Pope et al. (2002).

Exhibit 4-9.  Alternative C-R Functions for Long-Term PM2.5-Related Premature Mortality

Study Mortality Category Age Pollutant Metric

Pope et al. (2002) All-cause 30+ PM2.5 Annual Mean

Krewski et al. (2000) reanalysis of Pope et al. (1995) All-cause 30+ PM2.5 Annual Median

Krewski et al. (2000) reanalysis of Pope et al. (1995). 
Random effects, independent cities

All-cause 30+ PM2.5 Annual Median

Krewski et al. (2000) reanalysis of Pope et al. (1995). 
Random effects, regional adjustment

All-cause 30+ PM2.5 Annual Median

Pope et al. (2002) All-cause 30+ PM2.5 Annual Median

Krewski et al. (2000) reanalysis of Dockery et al. (1993) All-cause 25+ PM2.5 Annual Mean

Dockery et al. (1993) All-cause 25+ PM2.5 Annual Mean

Pope et al. (2002) Cardiopulmonary 30+ PM2.5 Annual Mean

Pope et al. (2002) Lung Cancer 30+ PM2.5 Annual Mean

The Krewski et al. (2000) reanalysis provides results for several models which control for spatial
correlations in the data.  These models are based on the original ACS air quality dataset, which contained
only median PM2.5 concentrations.  Ideally, the C-R function for premature mortality would be both based
on the mean and adjusted for regional variability.  Unfortunately, Krewski et al. do not provide such an
estimate.  As such, we have chosen to use the mean-based relative risk in our base analysis and to use the
median-based regionally adjusted relative risks to provide alternative estimates exploring the impact of
adjustments for spatial correlations.

Krewski, et al. (2000) also reanalyzed the data from another prospective cohort study (the
Harvard “Six Cities Study”) authored by Dockery et al. (1993). The Dockery et al. study used a smaller
sample of individuals from fewer cities than the study by Pope et al. (1995); however, it features
improved exposure estimates, a slightly broader study population (adults aged 25 and older), and a
follow-up period nearly twice as long as that of Pope et al. The SAB has noted that “the [Harvard Six
Cities] study had better monitoring with less measurement error than did most other studies” (U.S. EPA,
1999e, p. 10).  

Some of the functions are based on changes in mean PM2.5 concentrations while others are based
on median PM2.5 concentrations.  Estimated reductions in premature mortality will depend on both the
size of the C-R coefficient and the change in the relevant PM2.5 metric (mean or median).  We also
estimated alternative premature mortality incidence using both non-accidental and all-cause mortality
rates.  In previous benefit analyses conducted for the EPA, premature mortality was calculated using non-
accidental mortality rates.  For the sake of comparability to previous analyses, we included estimates of
premature mortality based on both rates.
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In addition, we included a recent study by Pope et al. (2002) that extends the original analysis by
Pope et al. (1995) in a number of significant ways.  Pope et al. (2002) had fifteen years of cohort data, as
opposed to the eight years of data in the original work, and they used three different sets of years to
measure mean PM2.5 levels, as opposed to a single measure.  The new set of results confirm the results of
the earlier studies.  In addition, the new set of results includes relative risk estimates for lung cancer and
cardiopulmonary causes of death, in addition to all cause mortality.

Sensitivity Calculation: Mortality Lag Structure

It is currently unknown whether there is a time lag (a delay between changes in PM exposures
and changes in mortality rates) in the chronic PM/premature mortality relationship.  The existence of such
a lag is important for the valuation of premature mortality incidences because economic theory suggests
that benefits occurring in the future should be discounted.  Although there is no specific scientific
evidence of the existence or structure of a PM effects lag, current scientific literature on adverse health
effects, such as those associated with PM (e.g., smoking related disease) and the difference in the effect
size between chronic exposure studies and daily mortality studies suggest that it is likely that not all
incidences of premature mortality reduction associated with a given incremental change in PM exposure
would occur in the same year as the exposure reduction.  This same smoking-related literature implies that
lags of up to a few years are plausible.

Following explicit advice from the SAB, we assume a five-year lag structure, with 25 percent of
premature deaths occurring in the first year, another 25 percent in the second year, and 16.7 percent in
each of the remaining three years (U.S. EPA, 1999d, p. 9).  It should be noted that the selection of a five-
year lag structure is not directly supported by any PM-specific literature.  Rather, it is intended to be a
best guess at the appropriate time distribution of avoided incidences of PM-related mortality.

Just when PM-related mortality occurs in relation to exposure to PM is uncertain.  We do not
know what percentage of PM-related mortality occurs in the same year as exposure, in the following year,
and so forth.   To account for the uncertainty about possible lags in PM-related mortality, we examine the
sensitivity of mortality-related benefits to three alternative lag structures.  Lag 1 will apportion the
occurrence of all incidence to the first year.  Valuation of these cases will not be discounted.  Lag 2, based
on the length of the study period for the Pope et al. (1995) study, assigns 100 percent of the occurrence of
mortality incidence to the eighth year out from the modeled future-year.  And, lag 3, based on the length
of the study period for the Dockery et al. (1993) study, assigns 100 percent of the occurrence to the
fifteenth year out from the modeled future-year.  Exhibit 4-10 summarizes these lag structures.

Exhibit 4-10.  Mortality Lag Structures in Base and Sensitivity Analyses

Structure
Year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base 25 25 16.7 16.7 16.7 0 0 0 0 0 0 0 0 0 0

Sensitivity 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sensitivity 2 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

Sensitivity 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
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Sensitivity Calculation: PM2.5 Effects Thresholds

The consistent advice from EPA's Science Advisory Board has been to model premature
mortality associated with PM exposure as a non-threshold effect, with harmful effects to exposed
populations regardless of the absolute level of ambient PM concentrations.  Nevertheless, some analysts
(Smith et al., 2000) have hypothesized the presence of a threshold relationship.  The nature of the
hypothesized relationship is that there might exist a PM concentration level below which further
reductions no longer yield premature mortality reduction benefits.  EPA does not necessarily endorse any
particular threshold.  Nonetheless, the sensitivity analysis illustrates how our estimates of the number of
premature mortalities in the Base Estimate might change under a range of alternative assumptions for a
PM mortality threshold. 

One important assumption that we adopted for the threshold sensitivity analysis is that no
adjustments are made to the shape of the C-R function above the assumed threshold.  Instead, thresholds
were applied by simply assuming that any changes in ambient concentrations below the assumed
threshold have no impacts on the incidence of premature mortality.  If there were actually a threshold,
then the shape of the C-R function would likely change and there would be no health benefits to
reductions in PM below the threshold.

To examine the effect an implied PM threshold has on the estimation of health effects in this
analysis, we applied an increasingly stringent threshold to the Krewski et al. (2000) mortality function in
five :g/m3 increments from no threshold to a 25 :g/m3.  Appendix A presents the results of this sensitivity
analysis.

Sensitivity Calculation: Ozone-Related Mortality

Both ozone and PM have been associated with increased risk of premature mortality, which is an
important health endpoint in this economic analysis due to the high monetary value associated with risks
to life.  However, to avoid any double-counting of estimated effects, we included only PM-related
mortality in the base analysis, and estimated ozone-related mortality as a sensitivity analysis.  Using a
random/fixed-effects weighting procedure, we pooled the incidence estimates of four U.S. ozone-related
mortality studies -- Ito and Thurston (1996), Kinney et al. (1995), Moolgavkar et al. (1995), and Samet et
al. (1997).  Appendix A presents the results of this analysis.

Sensitivity Calculation: Infant Mortality

Woodruff et al. (1997) associated changes in annual PM10 levels with changes in post-neonatal
mortality of infants aged 28 to 364 days.  Conceptually, any additional mortality from this function could
be added to the premature mortality predicted by Krewski et al. (2000), because the Krewski et al.
reanalysis of the Pope et al. (1995) function covers only the population over 29 years old.  The EPA
Clean Air Council, in an advisory issued for the §812 Prospective Analysis, recommended that this
endpoint not be included because it was a new endpoint that had not been replicated in other studies in the
U.S. (U.S. EPA, 1999a, p. 12).  The Council deemed that the coherence and consistency arguments which
support the use of other studies are not present with this study.  For this reason, the results for this
endpoint are presented as a supplemental calculation to the base analysis.
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4.2 Chronic Illness

Researchers have linked air pollution with a variety of adverse health effects that have long-term,
or chronic implications.  The onset of bronchitis and asthma have both been associated with exposure to
air pollutants.  Studies have linked the onset of chronic bronchitis in adults to particulate matter
(Schwartz, 1993; Abbey et al., 1995b); one study has linked the onset of chronic asthma in adults to
ozone (McDonnell et al., 1999); and, recent work has linked ozone and outdoor exercise with the
development of asthma in children (McConnell et al., 2002).  These results are consistent with research
that has found chronic exposure to pollutants leads to declining pulmonary functioning (Detels et al.,
1991; Ackermann-Liebrich et al., 1997; Abbey et al., 1998).  In addition, recent work by Peters et al.
(2001) suggests that short-term levels of PM2.5 can trigger the onset of acute myocardial infarction.  The
impacts can be long lasting, and in a sense chronic.  Work by Wittels et al. (1990), Eisenstein et al.
(2001), and Russell et al. (1998) indicates that the health costs of myocardial infarction can stretch over
several years, as periodic treatment is necessary.

4.2.1 Chronic Bronchitis

Chronic bronchitis is characterized by mucus in the lungs and a persistent wet cough for at least
three months a year for several years in a row, and affects roughly five percent of the U.S. population
(American Lung Association, 2002b, Table 4).  There are a limited number of studies that have estimated
the impact of air pollution on new incidences of chronic bronchitis.  Schwartz (1993) and Abbey et
al.(1995c) provide evidence that long-term PM exposure gives rise to the development of chronic
bronchitis in the U.S.  Because the nonroad standards are expected to reduce primarily PM2.5, this analysis
uses only the Abbey et al (1995c) study, because it is the only study focusing on the relationship between
PM2.5 and new incidences of chronic bronchitis. 

Base Estimate: Valuing Chronic Bronchitis

PM-related chronic bronchitis is expected to last from the initial onset of the illness throughout
the rest of the individual’s life.  WTP to avoid chronic bronchitis would therefore be expected to
incorporate the present discounted value of a potentially long stream of costs (e.g., medical expenditures
and lost earnings) and pain and suffering associated with the illness.  Two studies, Viscusi et al. (1991)
and Krupnick and Cropper (1992),  provide estimates of WTP to avoid a case of chronic bronchitis.

The Viscusi et al. (1991) and the Krupnick and Cropper (1992) studies were experimental studies
intended to examine new methodologies for eliciting values for morbidity endpoints.  Although these
studies were not specifically designed for policy analysis, the SAB (U.S. EPA, 1999c) has indicated that
the severity-adjusted values from this study provide reasonable estimates of the WTP for avoidance of
chronic bronchitis.  As with other contingent valuation studies, the reliability of the WTP estimates
depends on the methods used to obtain the WTP values.  The Viscusi et al. and the Krupnick and Cropper
studies are broadly consistent with current contingent valuation practices, although specific attributes of
the studies may not be.

The study by Viscusi et al. (1991) uses a sample that is larger and more representative of the
general population than the study by Krupnick and Cropper (1992), which selects people who have a
relative with the disease.  Thus, the valuation for chronic bronchitis is based on the distribution of WTP
responses from Viscusi et al.  The WTP to avoid a case of pollution-related chronic bronchitis (CB) is
derived by starting with the WTP to avoid a severe case of chronic bronchitis, as described by Viscusi et
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WTP WTP sevsev sev0 99 1 0 01 018. ( . . ) .= ⋅ − ⋅

WTP WTP WTP12 87 0 99 13 13 1 0 01 018 13. . ( . . )= = ⋅ − ⋅ ⋅⋅

WTP WTP WTP12 74 0 99 12 87 12 87 1 0 01 018 12 87. . . . ( . . . )= = ⋅ − ⋅ ⋅⋅

WTP WTP WTP12 61 0 99 12 74 12 74 1 0 01 018 12 74. . . . ( . . . )= = ⋅ − ⋅ ⋅⋅

WTP WTP esev sev0 99 1 0 01. ( . ) ,= ⋅ − ⋅

al. (1991), and adjusting it downward to reflect (1) the decrease in severity of a case of pollution-related
CB relative to the severe case described in the Viscusi et al. study, and (2) the elasticity of WTP with
respect to severity reported in the Krupnick and Cropper study.  Because elasticity is a marginal concept
and because it is a function of severity (as estimated from Krupnick and Cropper), WTP adjustments were
made incrementally, in one percent steps.  A severe case of CB was assigned a severity level of 13
(following Krupnick and Cropper).  The WTP for a one percent decrease in severity is given by:

where sev is the original severity level (which, at the start, is 13) and e is the elasticity of WTP with
respect to severity.  Based on the regression in Krupnick and Cropper (1992) (see below), the estimate of
e is 0.18*sev.  At the mean value of sev (6.47), e = 1.16.  As severity decreases, however, the elasticity
decreases.  Using the regression coefficient of 0.18, the above equation can be rewritten as:

For a given WTPsev and a given coefficient of sev (0.18), the WTP for a 50 percent reduction in severity
can be obtained iteratively, starting with sev =13, as follows:

and so forth.  This iterative procedure eventually yields WTP6.5, or WTP to avoid a case of chronic
bronchitis that is of “average” severity.

The derivation of the WTP to avoid a case of pollution-related chronic bronchitis is based on
three components, each of which is uncertain: (1) the WTP to avoid a case of severe CB, as described in
the Viscusi et al. (1991) study, (2) the severity level of an average pollution-related case of CB (relative
to that of the case described by Viscusi et al.), and (3) the elasticity of WTP with respect to severity of the
illness.  Because of these three sources of uncertainty, the WTP is uncertain.  Based on assumptions about
the distributions of each of the three uncertain components, a distribution of WTP to avoid a pollution-
related case of CB was derived by Monte Carlo methods.  The mean of this distribution is taken as the
central tendency estimate of WTP to avoid a pollution-related case of CB.  Each of the three underlying
distributions is described briefly below.  

1.  The distribution of WTP to avoid a severe case of CB was based on the distribution of WTP
responses in the Viscusi et al. (1991) study.  Viscusi et al. derived  respondents’ implicit WTP to avoid a
statistical case of chronic bronchitis from their WTP for a specified reduction in risk.  The mean response



28  There is an indication in the Viscusi et al. (1991) paper that the dollar values in the paper are in 1987 dollars.  Under this
assumption, the dollar values were converted to 2000 dollars.

29   Source of life expectancies: National Vital Statistics Reports, Volume 47, No. 19, June 30, 1999.  Table 5: “Life expectancy at
selected ages by race and sex: United States, 1997.
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implied a WTP of about $1,318,000 (2000 $)28; the median response implied a WTP of about $699,000
(2000 $).  However, the extreme tails of distributions of WTP responses are usually considered
unreliable.  Because the mean is much more sensitive to extreme values, the median of WTP responses is
often used rather than the mean.  Viscusi et al. report not only the mean and median of their distribution
of WTP responses, however, but the decile points as well.  The distribution of reliable WTP responses
from the Viscusi et al. study could therefore be approximated by a discrete uniform distribution giving a
probability of 1/9 to each of the first nine decile points.  This omits the first five and the last five percent
of the responses (the extreme tails, considered unreliable).  This trimmed distribution of WTP responses
from the Viscusi et al. study was assumed to be the distribution of WTPs to avoid a severe case of CB.  

2.  The distribution of the severity level of an average case of pollution-related CB was modeled
as a triangular distribution centered at 6.5, with endpoints at 1.0 and 12.0.  These severity levels are based
on the severity levels used in Krupnick and Cropper (1992), which estimated the relationship between
ln(WTP) and severity level, from which the elasticity is derived.  The most severe case of CB in that
study is assigned a severity level of 13.  The mean of the triangular distribution is 6.5.  This represents a
50 percent reduction in severity from a severe case.  

3.  The elasticity of WTP to avoid a case of CB with respect to the severity of that case of CB is a
constant times the severity level.  This constant was estimated by Krupnick and Cropper (1992) in the
regression of ln(WTP) on severity, discussed above.  This estimated constant (regression coefficient) is
normally distributed with mean = 0.18 and standard deviation = 0.0669 (obtained from Krupnick and
Cropper (1992)).

The distribution of WTP to avoid a case of pollution-related CB was generated by Monte Carlo
methods, drawing from the three distributions described above.  On each of 16,000 iterations (1) a value
was selected from each distribution, and (2) a value for WTP was generated by the iterative procedure
described above, in which the severity level was decreased by one percent on each iteration, and the
corresponding WTP was derived.  The mean of the resulting distribution of WTP to avoid a case of
pollution-related CB was $340,482.  This WTP estimate is reasonably consistent with full COI estimates
derived for chronic bronchitis (see below).

Alternative Estimate: Valuing Chronic Bronchitis

For the Alternative Estimate, we used cost-of illness values based on average annual lost earnings
and average annual medical expenditures reported by Cropper and Krupnick (1990). This study estimated
annual lost earnings resulting from chronic bronchitis as a function of age at onset of the illness, for the
following age categories: 25-43, 35-44, 45-54, and 55-65 (see Cropper and Krupnick (1990), Table 8). 
Annual medical expenses were estimated for 10-years age groups (0-9, 10-19, 20-29, ..., 80-89).  We
derived estimates of the present discounted value of the stream of medical and opportunity costs for
people whose age of onset is 30, 40, 50, 60, 70, and 80.  Medical costs (which are in 1977$ in the Cropper
and Krupnick study) were inflated to 2000$ using the CPI-U for medical care; lost earnings (opportunity
costs) were inflated to 2000$ using the CPI-U “all items.”  Life expectancies were assumed to be
unaffected by the illness.29  For example, an individual at age 70 has a life expectancy of 14.3 more years,
and we assumed that someone whose age of onset of chronic bronchitis is 70 will also live for 14.3 more



30  The percentage of reversals is estimated to be 46.6% based on Abbey et al. (1995a, Table 1).
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years.  We also assumed that opportunity costs at ages 66 and over were zero.  Present discounted values
were calculated using three and seven percent discount rates.

For each of the two discount rates, we derived cost of illness unit values for chronic bronchitis for
the following age categories: 27-44, 45-64, and 65+, corresponding to the age categories that were used in
the epidemiological study that estimated a concentration-response function for chronic bronchitis.  The
estimate for the 27-44 age group is an average of the present discounted values calculated for ages 30 and
40; the estimate for the 45-64 age category is an average of the present discounted values calculated for
ages 50 and 60; and the estimate for the 65+ age category is an average of the present discounted values
calculated for ages 70 and 80.  Exhibit 4-11 presents the resulting cost of illness estimates.

Exhibit 4-11.  Alternative Estimate: Cost-of-Illness for Chronic Bronchitis

Age Discount Rate Value a

(2000 $)
Description

27-44 3% $150,542 Cropper and Krupnick (1990).  Including
both medical costs and opportunity cost
from age of onset to expected age of
death (assuming that chronic bronchitis
does not change life expectancy). 
Opportunity cost adjusted from 1977$ to
2000$ using CPI-U “all items.”  Medical
cost adjusted from 1977$ to 2000$ using
CPI-U for medical care.

7% $86,026

45-64 3% $97,610

7% $72,261

65+ 3% $11,088

7% $9,030
a This table gives present values of future-year costs.  The greater the discount rate applied to a given future-year cost, the smaller
the present discounted value of that future-year cost.  Therefore, present values derived using a 3% discount rate are larger than
present values derived using a 7% discount rate, when both discount rates are applied to the same future-year cost.

Sensitivity Calculation: Chronic Bronchitis Reversals

In developing the C-R function for chronic bronchitis, it is necessary to estimate its annual
incidence rate.  The annual incidence rate is derived by taking the number of new cases (234), dividing by
the number of individuals in the sample (3,310), as reported by Abbey et al.(1993, Table 3), dividing by
the ten years covered in the sample, and then multiplying by one minus the reversal rate.30  Reversals refer
to those cases of chronic bronchitis that were reported at the start of the Abbey et al. survey, but were
subsequently not reported at the end of the survey.  Since we assume that chronic bronchitis is a
permanent condition, we subtract these reversals.  Nevertheless, reversals may likely represent a real
effect that should be included in the analysis.  To allow for this possibility, we present an estimate of
reversals in an alternative calculation in which reversals are considered to be chronic bronchitis cases of
the lowest severity level, as described below.

Valuing Chronic Bronchitis Reversals

In valuing chronic bronchitis reversals, we use the same method used to value cases of chronic
bronchitis.  However, instead of allowing the severity level to range from one to 12, we value all reversals
at a severity level of one. 
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4.2.2 Non-Fatal Myocardial Infarction (Heart Attack)

Non-fatal heart attacks have been linked with short term exposures to PM2.5 in the U.S. (Peters et
al., 2001) and other countries (Poloniecki et al., 1997).  We used a recent study by Peters et al. as the
basis for the C-R function estimating the relationship between PM2.5 and non-fatal heart attacks.  It is the
only available U.S. study to provide a specific estimate for heart attacks.  Other studies, such as Samet et
al. (2000) and Moolgavkar et al. (2000a) reported a consistent relationship between all cardiovascular
hospital admissions, including for non-fatal heart attacks, and PM.  However, they did not focus
specifically on heart attacks.  Given the lasting impact of a heart attack on longer-term health costs and
earnings, we chose to provide a separate estimate for non-fatal heart attacks based on the single available
U.S. C-R function.

The finding of a specific impact on heart attacks is consistent with hospital admission and other
studies showing relationships between fine particles and cardiovascular effects both within and outside
the U.S.   These studies provide a weight of evidence for this type of effect.  Several epidemiologic
studies (Liao et al., 1999; Gold et al., 2000; Magari et al., 2001) have shown that heart rate variability (an
indicator of how much the heart is able to speed up or slow down in response to momentary stresses) is
negatively related to PM levels.  Lack of heart rate variability is a risk factor for heart attacks and other
coronary heart diseases (Tsuji et al., 1996; Liao et al., 1997; Dekker et al., 2000).  As such, the reduction
in heart rate variability due to PM is consistent with an increased risk of heart attacks.

Valuing Non-Fatal Myocardial Infarction (Heart Attack)

EPA has not previously estimated the impact of its programs on reductions in the expected
number of non-fatal heart attacks, although it has examined the impact of reductions in other related
cardiovascular endpoints.  We were not able to identify a suitable WTP value for reductions in the risk of
non-fatal heart attacks.  Instead, we have used a cost-of-illness unit value with two components: the direct
medical costs and the opportunity cost (lost earnings) associated with the illness event.  Because the costs
associated with a heart attack extend beyond the initial event itself, we considered costs incurred over
several years.  For opportunity costs, we used values derived from Cropper and Krupnick (1990),
originally used in the 812 Retrospective Analysis of the Clean Air Act (U.S. EPA, 1997b).  For the direct
medical costs, we found three possible sources in the literature.

Wittels et al. (1990) estimated expected total medical costs of myocardial infarction over five
years to be $51,211 (in 1986$) for people who were admitted to the hospital and survived hospitalization. 
(There does not appear to be any discounting used.)  Using the CPI-U for medical care, the Wittels et al.
estimate is $109,474 in year 2000$.  This estimated cost is based on a medical cost model, which
incorporated therapeutic options, projected outcomes and prices (using “knowledgeable cardiologists” as
consultants).  The model used medical data and medical decision algorithms to estimate the probabilities
of certain events and/or medical procedures being used.  The authors noted that the average length of
hospitalization for acute myocardial infarction has decreased over time (from an average of 12.9 days in
1980 to an average of 11 days in 1983).  Wittels et al. used 10 days as the average in their study.  It is
unclear how much further the length of stay may have decreased from 1983 to the present.  The average
length of stay for ICD code 410 (myocardial infarction) in 2000 is 5.5 days ((AHRQ 2000)). However,
this may include patients who died in the hospital (not included among our non-fatal cases), whose length
of stay was therefore substantially shorter than it would be if they hadn’t died.

Eisenstein et al. (2001) estimated 10-year costs of $44,663, in 1997$, or $49,651 in 2000$ for
myocardial infarction patients, using statistical prediction (regression) models to estimate inpatient costs. 
Only inpatient costs (physician fees and hospital costs) were included.
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Russell et al. (1998) estimated first-year direct medical costs of treating nonfatal myocardial
infarction of $15,540 (in 1995$), and $1,051 annually thereafter.  Converting to year 2000$, that would
be $23,353 for a 5-year period (without discounting), or $29,568 for a ten-year period.

As seen in Exhibit 4-12, the three different studies provided significantly different values.  We
have not adequately resolved the sources of differences in the estimates.  Because the wage-related
opportunity cost estimates from Cropper and Krupnick (1990) cover a 5-year period, we used a simple
average of the two estimates for medical costs that similarly cover a 5-year period, or $62,495.  We added
this to the 5-year opportunity cost estimate.  Exhibit 4-13 gives the resulting estimates.  We currently do
not have adequate information to characterize the uncertainty surrounding any of these estimates.

Exhibit 4-12.  Summary of Studies Valuing Reduced Incidences of Myocardial Infarction

Study Direct Medical Costs
 (2000$) a

Over an x-year period, for x =

Wittels et al., 1990 $109,474 5

Russell et al., 1998 $22,331 5

Eisenstein et al., 2001 $49,651 10

Russell et al., 1998 $27,242 10
a Wittels et al. did not appear to discount costs incurred in future years.  The values for the other two studies are based on a three
percent discount rate.

Exhibit 4-13.  Estimated Costs Over a 5-Year Period of a Non-Fatal Myocardial Infarction

Age Group
Opportunity Cost a Medical Cost b Total Cost

3% Discount
Rate

7% Discount
Rate

3% Discount
Rate

7% Discount
Rate

3% Discount
Rate

7% Discount
Rate

0 - 24 $0 $0 $65,902 $65,293 $65,902 $65,293

25-44 $8,774 $7,855 $65,902 $65,293 $74,676 $73,149

45 - 54 $12,932 $11,578 $65,902 $65,293 $78,834 $76,871

55 - 65 $74,746 $66,920 $65,902 $65,293 $140,649 $132,214

> 65 $0 $0 $65,902 $65,293 $65,902 $65,293
a From Cropper and Krupnick (1990).  Present discounted value of 5 yrs of lost earnings, at 3% and 7% discount rate, adjusted
from 1977$ to 2000$ using CPI-U “all items”.
b An average of the 5-year costs estimated by Wittels et al. (1990) and Russell et al. (1998).  Note that Wittels et al. appears not to
have used discounting in deriving a 5-year cost of $109,474;  Russell et al. estimated first-year direct medical costs and annual
costs thereafter.  The resulting 5-year cost is $22,331, using a 3% discount rate, and $21,113, using a 7% discount rate.  Medical
costs were inflated to 2000$ using CPI-U for medical care.
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4.2.3 Sensitivity Calculation: Chronic Asthma

In a number of studies ozone, PM, and even CO have been linked to acute asthmatic complaints
(e.g., Whittemore and Korn, 1980; Ostro et al., 1995; Sheppard et al., 1999), however there is more
limited evidence regarding the link between air pollution and the development of asthma.  The best
evidence points to ozone.  Abbey et al. (1991; 1993) reported a significant link between ozone and the
development of asthma, and Portney and Mullahy (1990) found ozone linked to sinusitis and hay fever,
and McConnell et al. (2002) reported that ozone exposure and outdoor exercise is associated is with the
development of asthma in children. A review of research data by the EPA (1996b, p. 9-35) concluded that
prolonged ozone exposure causes structural changes in several regions of the respiratory tract, and the
available epidemiological studies are suggestive of a link  between chronic health effects in humans and
long-term ozone exposure.  A cohort study by McDonnell et al. (1999) carefully measured ozone
exposure over 15 years, and found ozone exposure was linked to the onset of asthma in adult males.

The McDonnell et al. (1999) study used the same cohort of Seventh-Day Adventists as Abbey et
al. (1991; 1993), and examined the association between air pollution and the onset of asthma in adults
between 1977 and 1992.  Males who did not report doctor-diagnosed asthma in 1977, but reported it in
1987 or 1992, had significantly higher ozone exposures, controlling for other covariates; no significant
effect was found between ozone exposure and asthma in females.  No significant effect was reported for
females or males due to exposure to PM, NO2, SO2, or SO4.

Some questions have been raised about the statistical validity of the associations found in this
study and the appropriateness of transferring the estimated C-R function from the study populations
(white, non-Hispanic males) to other male populations (i.e. African-American males).  Some of these
concerns include the following: 1) no significant association was observed for female study participants
also exposed to ozone; 2) the estimated C-R function is based on a cross-sectional comparison of ozone
levels, rather than incorporating information on ozone levels over time; 3) information on the accuracy of
self-reported incidence of chronic asthma was collected but not used in estimating the C-R function; 4)
the study may not be representative of the general population because it included only those individuals
living 10 years or longer within 5 miles of their residence at the time of the study; and 5) the study had a
significant number of study participants drop out, either through death, loss of contact, or failure to
provide complete or consistent information.  While these issues may result in increased uncertainty about
this effect, however, none can be identified with a specific directional bias in the estimates.  In addition,
the SAB reviewed the study and deemed it appropriate for quantification of changes in ozone
concentrations in benefits analyses (U.S. EPA, 1999d, p. 6).  However, because of the sources of
uncertainty associated with this study, we include it only as a sensitivity calculation. 

Valuing Chronic Asthma

Two studies have estimated WTP to avoid chronic asthma in adults.  Blumenschein and
Johannesson (1998) used two different contingent valuation (CV) methods, the dichotomous choice
method and a bidding game, to estimate mean willingness to pay for a cure for asthma.  The mean WTP
elicited from the bidding game was $189 per month, or $2,268 per year (in 1996$).  The mean WTP
elicited from the dichotomous choice approach was $343 per month, or $4,116 per year (in 1996$). 
Using $2,268 per year, a five percent discount rate, and 1997 life expectancies for males in the United
States (National Center for Health Statistics, 1999, Table 5), the present discounted value of the stream of
annual WTPs is $37,735 (in 2000 $).

O’Conor and Blomquist (1997) estimated WTP to avoid chronic asthma from estimates of risk-
risk tradeoffs.  Combining the risk-risk tradeoffs with a statistical value of life, the annual value of



31   Because chronic asthma is simply an alternative calculation, we present a single estimate based on a five percent discount rate,
rather than present separate estimates based on three percent and seven percent discount rates.
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avoiding asthma can be derived.  Assuming a value of a statistical life of $6 million, they derived an
annual WTP to avoid asthma of $1500 (O'Connor and Blomquist, 1997, p. 677).  For a value of a
statistical life of $5,894,400 (in 1997 $), the corresponding implied annual value of avoiding chronic
asthma, based on O’Conor and Blomquist would be $1,474.  Assuming a five percent discount rate and
1997 life expectancies for males in the United States, the present discounted value of the stream of annual
WTPs would be about $23,968 (in 2000 $).31

We estimated the value of avoiding a case of chronic asthma to be $30,852, the average of the
two study-specific values.  The uncertainty surrounding the WTP to avoid a case of chronic asthma
among adult males was characterized by a triangular distribution on the range determined by the two
study-specific WTP estimates, [$23,968, $37,735], centered at $30,852.

4.3 Hospital Admissions and Emergency Room Visits

Respiratory and cardiovascular hospital admissions are the two broad categories of hospital
admissions that have been related to exposure to both PM and ozone.  We estimated the impact of ozone
and PM on respiratory and cardiovascular hospital admissions.  Although the benefits associated with
respiratory and cardiovascular hospital admissions are estimated separately in the analysis, the methods
used to estimate changes in incidence and to value those changes are the same for both broad categories
of hospital admissions.  In addition to respiratory- and cardiovascular-related hospital admissions, we
estimated asthma-related emergency room (ER) visits associated with PM and ozone.

4.3.1 Respiratory and Cardiovascular Hospital Admissions

Due to the availability of detailed hospital admission and discharge records, there is an extensive
body of literature examining the relationship between hospital admissions and air pollution.  Because of
this, we pooled some of the hospital admission endpoints, using the results of a number of studies. 
Exhibit 4-14 summarizes the studies that we used.
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Exhibit 4-14.  Ozone and PM-Related Hospital Admission Studies

Hospitalization Type Location ICD-9 Codes Study Age of Study
Population

PM2.5-Related Hospital Admissions

COPD, 65+ Cook, Los Angeles, and
Mariposa counties

490-496 Moolgavkar (2000b) 65+

Urban U.S. 490-496 Lippman et al. (2000) 65+

COPD, 20-64 Cook, Los Angeles, and
Mariposa counties

490-496 Moolgavkar (2000b) 20-64

Pneumonia, 65+ Urban U.S. 480-487 Lippman et al. (2000) 65+

Asthma, <65 Seattle, WA 493 Sheppard, et al. (1999) <65

Cardiovascular, 65+ Cook, Los Angeles, and
Mariposa counties

390-459 Moolgavkar (2000a) 65+

Urban U.S. 410-414, 427-428 Lippman et al. (2000) 65+

Cardiovascular, 20-64 Cook, Los Angeles, and
Mariposa counties

390-459 Moolgavkar (2000a) 20-64

Ozone-Related Hospital Admissions

All-Respiratory, 65+ New Haven, CT; and
Tacoma, WA

460-519 Schwartz (1995) 65+

Detroit, MI 480-487, 491-492,
494-496

Schwartz (1994b) 65+

Minneapolis, MN 480-487 Schwartz (1994a) 65+

Minneapolis, MN 480-487, 490-496 Moolgavkar et al (1997) 65+

Toronto, CAN 464, 466, 480-487,
490-496

Burnett et al. (2001) <2

To estimate avoided incidences of cardiovascular hospital admissions associated with PM2.5, we
use studies by Moolgavkar (2000a) and Lippmann et al. (2000).  There are additional published studies
showing a statistically significant relationship between PM10 and cardiovascular hospital admissions. 
However, given that the control option we are analyzing is expected to reduce primarily PM2.5, we have
chosen to focus on the two studies focusing on PM2.5.  Both of these studies estimated a C-R function for
populations over 65, allowing us to pool the C-R functions for this age group.  Only Moolgavkar
estimated a separate C-R function for populations 20 to 64.  Total cardiovascular hospital admissions are
thus the sum of the pooled estimate for populations over 65 and the single study estimate for populations
20 to 64.  Cardiovascular hospital admissions include admissions for myocardial infarctions.  In order to
avoid double counting benefits from reductions in MI when applying the C-R function for cardiovascular
hospital admissions, we first adjusted the baseline cardiovascular hospital admissions to remove
admissions for myocardial infarction.  

To estimate total avoided incidences of respiratory hospital admissions, we use C-R functions for
several respiratory causes, including chronic obstructive pulmonary disease (COPD), pneumonia, and
asthma.  As with cardiovascular admissions, there are additional published studies showing a statistically
significant relationship between PM10 and respiratory  hospital admissions.  We use only those focusing
on PM2.5.  Both Moolgavkar (2000a) and Lippmann et al (2000) estimated C-R functions for COPD in
populations over 65, allowing us to pool the C-R functions for this group.  Only Moolgavkar estimated a



32   Some people take action to avert the negative impacts of pollution.  While the costs of successful averting behavior should be
added to the sum of the health-endpoint-specific costs when estimating the total costs of pollution, these costs are not associated
with any single health endpoint   It is possible that in some cases the averting action was not successful, in which case it might be
argued that the cost of the averting behavior should be added to the other costs listed (for example, it might be the case that an
individual incurs the costs of averting behavior and in addition incurs the costs of the illness that the averting behavior was intended
to avoid).  Because averting behavior is generally not taken to avoid a particular health problem  (such as a hospital admission for
respiratory illness), but instead is taken to avoid the entire collection of adverse effects of pollution, it does not seem reasonable to
ascribe the entire costs of averting behavior to any single health endpoint.  However, omission of these averting behavior costs will
tend to bias the estimates downward.     
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separate C-R function for populations 20 to 64. Total COPD hospital admissions are thus the sum of the
pooled estimate for populations over 65 and the single study estimate for populations 20 to 64.    Only
Lippmann et al estimated pneumonia, and only for the population 65 and older.  In addition, Sheppard et
al (1999) estimated a C-R function for asthma hospital admissions for populations under age 65.  Total
avoided incidences of PM-related respiratory-related hospital admissions is the sum of COPD,
pneumonia, and asthma admissions.

To estimate avoided incidences of respiratory hospital admissions associated with ozone, we use
a number of studies examining hospital admissions for a range of respiratory illnesses, including
pneumonia and COPD.  Two age groups, adults over 65 and children under 2, are examined.  For adults
over 65, Schwartz (1995) provides C-R functions for 2 different cities relating ozone and hospital
admissions for all respiratory causes (defined as ICD codes 460-519).  Two studies (Schwartz, 1994a;
Moolgavkar et al., 1997) examined the link between ozone and both pneumonia and COPD hospital
admissions in Minneapolis.  However, Schwartz (1994a) found no significant relationship between ozone
and COPD, and did not report a coefficient.   One additional study (Schwartz, 1994b) examined ozone
and both pneumonia and COPD hospital admissions in Detroit.  Burnett et al. (2001), is the only study
providing a C-R function for respiratory hospital admissions in children under two.

To estimate total respiratory hospital admissions due to ozone for adults over 65, we first summed
the separate effects categories calculated by each study for each city.  We summed together the
pneumonia and COPD estimates reported for Detroit by Schwartz (1994b) in order to get an estimate of
all-respiratory hospital admissions.  Similarly, we summed the Minneapolis from the C-R functions based
on the work by Moolgavkar et al (1997).  And, we simply used the pneumonia estimate reported by
Schwartz (1994a) as an estimate all-respiratory hospital admissions.  We then used a fixed/random effects
pooling procedure to combine the two all-respiratory hospital admission 
estimates for Minneapolis.  Finally, we used fixed/random effects pooling to combine the results for
Minneapolis, Detroit, Tacoma, and New Haven.

4.3.2 Valuing Respiratory and Cardiovascular Hospital Admissions

Society’s WTP to avoid a hospital admission includes medical expenses, lost work productivity,
the non-market costs of treating illness (i.e., air, water and solid waste pollution from hospitals and the
pharmaceutical industry), as well as WTP of the affected individual, as well as of that of relatives, friends,
and associated caregivers, to avoid the pain and suffering.32

Because medical expenditures are to a significant extent shared by society, via medical insurance,
Medicare, etc., the medical expenditures actually incurred by the individual are likely to be less than the
total medical cost to society.  The total value to society of an individual’s avoidance of hospital
admission, then, might be thought of as having two components:  (1) the cost of illness (COI) to society,
including the total medical costs plus the value of the lost productivity, as well as (2) the WTP of the
individual, as well as that of others, to avoid the pain and suffering resulting from the illness.
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In the absence of estimates of social WTP to avoid hospital admissions for specific illnesses
(components 1 plus 2 above), estimates of total COI (component 1) are typically used as conservative
(lower bound) estimates.  Because these estimates do not include the value of avoiding the pain and
suffering resulting from the illness (component 2), they are biased downward.  Some analyses adjust COI
estimates upward by multiplying by an estimate of the ratio of WTP to COI, to better approximate total
WTP.  Other analyses have avoided making this adjustment because of the possibility of over-adjusting --
that is, possibly replacing a known downward bias with an upward bias.  The COI values used in this
benefits analysis will not be adjusted to better reflect the total WTP.

Following the method used in the §812 analysis (U.S. EPA, 1999b), ICD-code-specific COI
estimates used in our analysis consist of two components: estimated hospital charges and the estimated
opportunity cost of time spent in the hospital (based on the average length of a hospital stay for the
illness).  The opportunity cost of a day spent in the hospital is estimated as the value of the lost daily
wage, regardless of whether or not the individual is in the workforce.  This was estimated as the median
weekly wage in 1990, divided by 5, and inflated to year 2000$ using the CPI-U “all items.”  The resulting
estimate is $109.35. 

For all hospital admissions included in this analysis, estimates of hospital charges and lengths of
hospital stays were based on statistics provided by the Agency for Healthcare Research and Quality’s
Healthcare Utilization Project (2000).  The total COI for an ICD-code-specific hospital stay lasting n
days, then, would be estimated as the mean hospital charge plus $109.35*n.  Most respiratory hospital
admissions categories considered in epidemiological studies consisted of sets of ICD codes.  The unit
dollar value for the set of ICD codes was estimated as the weighted average of the ICD-code-specific
values (mean hospital charges plus opportunity costs, based on length of stay) of each ICD code in the
set.  The weights were the relative frequencies of the ICD codes among hospital discharges in the United
States, as estimated by the National Hospital Discharge Survey (Owings and Lawrence, 1999, Table 1). 
Exhibit 4-15 shows the unit values thus derived for valuing respiratory and cardiovascular hospital
admissions.

The mean hospital charges and mean lengths of stay provided by (AHRQ 2000) are based on a
very large nationally representative sample of about seven million hospital discharges, and are therefore
the best estimates of mean hospital charges and mean lengths of stay available.  We were not able to
estimate the uncertainty surrounding cost-of-illness estimates for hospital admissions because 1993 was
the last year for which standard errors of estimates of mean hospital charges were reported .  However,
the standard errors reported in 1993 were very small because estimates of mean hospital charges were
based on large sample sizes, and the overall sample size in 1997 was about ten times as large as that in
1993 (at about seven million hospital discharges in all).  The standard errors of the current estimates of
mean hospital charges will therefore be negligible.   Therefore, although we cannot include the
uncertainty surrounding these cost-of-illness estimates in our overall uncertainty analysis, the omission of
this component of uncertainty will have virtually no impact on the overall characterization of uncertainty.

Because of distortions in the market for medical services, the hospital charge may exceed “the
cost of a hospital stay.”  We use the example of a hospital visit to illustrate the problem.  Suppose a
patient is admitted to the hospital to be treated for an asthma episode.  The patient’s stay in the hospital
(including the treatments received) costs the hospital a certain amount.  This is the hospital cost – i.e., the
short-term expenditures of the hospital to provide the medical services that were provided to the patient
during his hospital stay.  The hospital then charges the payer a certain amount – the hospital charge.  If
the hospital wants to make a profit,  is trying to cover costs that are not associated with any one particular
patient admission (e.g., uninsured patient services), and/or has capital expenses (building expansion or
renovation) or other long term costs, it may charge an amount that exceeds the patient-specific short term
costs of providing services.  The payer (e.g., the health maintenance organization or other health insurer)
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pays the hospital a certain amount – the payment – for the services provided to the patient.  The less
incentive the payer has to keep costs down, the closer the payment will be to the charge.  If, however, the
payer has an incentive to keep costs down, the payment may be substantially less than the charge; it may
still, however, exceed the short-term cost for services to the individual patient.

Although the hospital charge may exceed the short-term cost to the hospital of providing the
medical services required during a patient’s hospital stay, cost of illness estimates based on hospital
charges are still likely to understate the total social WTP to avoid the hospitalization in the first place,
because the omitted WTP to avoid the pain and suffering is likely to be quite large.    

Exhibit 4-15.  Unit Values for Respiratory and Cardiovascular Hospital Admissions

Hospital Admission Category ICD-9 Codes Age Range COI a

(2000 $)

all respiratory 460-519  65+ $18,353

0 - 2 $7,741

pneumonia 480-487 65+ $17,802

COPD 490-492, 494-496 65+ $13,615

20-64 $11,794

asthma 493 <65 $7,771

all cardiovascular 390-429 65+ $21,162

20-64 $22,754

ischemic heart disease 410-414 65+ $25,848

dysrhythmias 427 65+ $15,698

congestive heart failure 428 65+ $15,185
a The unit value for a group of ICD-9 codes is the weighted average of ICD-9 code-specific values, from AHRQ (2000).  The
weights are the relative frequencies of hospital discharges for each ICD-9 code in the group (Owings and Lawrence, 1999, Table
1). 

4.3.3 Asthma-Related Emergency Room Visits

To estimate the effects of PM air pollution reductions on asthma-related ER visits, we use the C-
R function based on a study of children 18 and under by Norris et al. (1999).  As noted earlier, there is
another study by Schwartz examining a broader age group (less than 65), but the Schwartz study focused
on PM10 rather than PM2.5.  We selected the Norris et al. C-R function because it better matched the
pollutant of interest. Because children tend to have higher rates of hospitalization for asthma relative to
adults under 65, we will likely capture the majority of the impact of PM2.5 on asthma ER visits in
populations under 65, although there may still be significant impacts in the adult population under 65.  

Initially we were concerned about double-counting the benefits from reducing both hospital
admissions and ER visits.  However, our estimates of hospital admission costs do not include the costs of
admission to the ER, so we can safely estimate both hospital admissions and ER visits.

Exhibit 4-16 lists the four C-R functions that we used to estimate the effects of exposure to PM
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and ozone on asthma-related ER visits.  For ozone-related asthma ER visits, we use three epidemiological
studies: Cody et al. (1992), Weisel et al. (1995), and Stieb et al. (1996).  Working in central New Jersey,
Cody et al. examined asthma-related ER visits over a 16 month period between May, 1988 and August,
1989, and found that ozone was linked to asthma-related ER visits. No significant effect was seen for
PM10 or SO2.  Using a one-pollutant model, Weisel et al. also found ozone linked to asthma-related ER
visits in an all-age 1990 population for eight New Jersey counties.  Stieb et al. (1996) examined the
relationship between ER visits and air pollution for persons of all ages in St. John, New Brunswick,
Canada, from May through September in 1984-1992.  Ozone was significantly linked to ER visits,
especially when ozone levels exceeded 75 ppb.  Schwartz et al. (1993) failed to find a significant
relationship between asthma-related ER visits and ozone.  In this study of older Seattle residents,
Schwartz et al. instead found PM10 to be significantly related to asthma-related ER visits.

Exhibit 4-16.  Asthma-Related Emergency Room Visit Studies

Location Study Pollutants Used in Final Model Study Population

central and northern NJ Cody et al. (1992) O3 all ages

central and northern NJ Weisel et al. (1995) O3 all ages

New Brunswick, Canada Stieb et al. (1996) O3 all ages

Seattle, WA Schwartz et al. (1993) PM10 <65

Valuing Asthma-Related Emergency Room (ER) Visits

To value asthma emergency room (ER) visits, we used a simple average of two estimates from
the literature.  The first estimate comes from Smith et al. (1997), who reported that there were
approximately 1.2 million asthma-related ER visits made in 1987, at a total cost of $186.5 million, in
1987$.  The average cost per visit was therefore $155 in 1987$, or $311.55 in 2000 $ (using the CPI-U
for medical care to adjust to 2000 $).  The second is from Stanford et al. (1999), who examined data from
asthmatics from 1996-1997, and reported an average cost of $260.67.  A simple average of the two
estimates yields a (rounded) unit value of $286.

In comparing their study to Smith et al. (1997), Stanford et al. (1999) noted that the data used by
Smith et al., “may not reflect changes in treatment patterns during the 1990s.” In addition, its costs are the
costs to the hospital (or ER) for treating asthma rather than charges or payments by the patient and/or
third party payer.  Costs to the ER are probably a better measure of the value of the medical resources
used up on an asthma ER visit. (See above for a discussion of costs versus charges.).

Each of the unit values offered by the two studies has uncertainty surrounding it, and this
uncertainty can be characterized by a distribution.  The uncertainty surrounding the unit value of $311.55
from Smith et al. is characterized by a triangular distribution, centered at $311.55, on the range [$231,
$431].  The uncertainty surrounding the unit value of $260.67 from Stanford et al. can be characterized as
a normal distribution with mean equal to $260.67 and standard deviation equal to 5.22 (the reported
standard error of the estimate.  The uncertainty distribution for asthma-related ER visits is a pooled
distribution obtained via Monte Carlo methods.  On each of many iterations, one of the two distributions
is selected (with each distribution having a 50 percent chance of selection), and then a value is randomly
selected from that distribution.
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4.3.4 Sensitivity Calculation: PM10-Related Hospital Admissions

A recent study by the Health Effects Institute (HEI) (Samet et al., 2000) estimated separate
models for PM10 and pneumonia, COPD and cardiovascular diseases in each of fourteen cities in the
United States, as well as pooled estimates across these cities.  The fourteen cities included in the HEI
hospital admissions study are Birmingham, Alabama; Boulder, Colorado; Canton, Ohio; Chicago, Illinois;
Colorado Springs, Colorado; Detroit, Michigan; Minneapolis/St. Paul, Minnesota; Nashville, Tennessee;
New Haven, Connecticut; Pittsburgh, Pennsylvania; Provo/Orem, Utah; Seattle, Washington; Spokane,
Washington; and Youngstown, Ohio.  

The Samet et al. (2000) pooled estimates are desirable for several reasons.  First, the HEI models
are distributed lag models that are designed to capture not only same-day effects of PM but the effects of
PM on a series of days subsequent to exposure.  This type of model therefore captures the full impact of
PM on hospital admissions.  Samet et al. (2000) note that because of serial correlation, the coefficients of
the PM lags tend to be unstable (i.e., have large variances) in single-city models; however, the pooled
estimates, based on all fourteen cities are more stable because they are based on much larger sample sizes. 
A second advantage of the HEI models is that they represent the PM effect across a range of cities in the
United States.  Although other studies have estimated C-R functions in various cities in the United States,
many of these cities (e.g., Minneapolis/St. Paul, Birmingham, Detroit, Spokane, New Haven, and Seattle)
are included in the HEI study, which is a more recent analysis of the PM-hospital admissions
relationships in these cities.

Although the HEI models do not include other pollutants, they do investigate the impact of
omitting other pollutants on the estimated PM effects on hospital admissions.  The results of this
investigation are shown graphically in Figures 33 and 34 of  Samet et al. (2000).  The study authors
conclude that the omission of SO2 and O3 from the models had virtually no effect on the estimated PM
effect in any of the three pooled estimates (for cardiovascular diseases, COPD, and pneumonia).  While
Figure 34 suggests that this is the case for CV diseases and pneumonia, the omission of ozone from the
model appears to have resulted in a downward-biased estimate of the PM effect on hospital admissions
for COPD.  This suggests that using the HEI pooled estimate for COPD will tend to understate the PM
effect.

In valuing PM10-related hospital admissions, we use the same cost-of-illness approach that we
used for the Base Estimate.  Appendix A summarizes these results.

4.4 Acute Illnesses and Symptoms Not Requiring Hospitalization

As indicated in Exhibit 4-17, in addition to mortality, chronic illness, and hospital admissions,
there are a number of acute health effects not requiring hospitalization that are associated with exposure
to ambient levels of ozone and PM.  The sources for the C-R functions used to quantify these effects are
described below. 



33    See http://www.nlm.nih.gov/medlineplus/ency/article/000124.htm, accessed January 2002 
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Exhibit 4-17.  Studies of Symptoms/Illnesses Not Requiring Hospitalization

Endpoint a Applied Ages Pollutant Study

Acute bronchitis Ages 8-12 PM2.5 Dockery et al. (1996)

Lower respiratory symptoms Ages 7-14 PM2.5 Schwartz et al. (1994)

Upper respiratory symptoms Asthmatics, ages 9-11 PM10 Pope et al. (1991)

Minor restricted activity day Ages 18-65 PM2.5 Ostro and Rothschild (1989), 

Work loss days Ages 18-65 PM2.5 Ostro (1987)

School Loss Days
9-10
6-11

O3 Pooled estimate:
Gilliland et al (2001)
Chen et al (2000)

Worker productivity Outdoor workers O3 Crocker and Horst (1981) and EPA (1994).

4.4.1 Acute Bronchitis

Around five percent of U.S. children between ages five and seventeen experience episodes of
acute bronchitis annually (Adams and Marano, 1995).  Acute bronchitis is characterized by coughing,
chest discomfort, slight fever, and extreme tiredness, lasting for a number of days.  According to the
MedlinePlus medical encyclopedia33, with the exception of cough, most acute bronchtis symptoms abate
within 7 to 10 days.  We estimated the incidence of episodes of acute bronchitis in children between the
ages 8-12 using a C-R function developed from Dockery et al. (1996).  

Dockery et al. (1996) examined the relationship between PM and other pollutants on the reported
rates of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 children ages 8-12
living in  24 communities in the U.S. and Canada.  Health data were collected in 1988-1991, and single-
pollutant models were used in the analysis to test a number of measures of particulate air pollution. 
Dockery et al. found that annual level of sulfates and particle acidity were significantly related  to
bronchitis, and PM2.5 and PM10 were marginally significantly related to bronchitis.

Valuing Acute Bronchitis

Estimating WTP to avoid a case of acute bronchitis is difficult for several reasons.  First, WTP to
avoid acute bronchitis itself has not been estimated.  Estimation of WTP to avoid this health endpoint
therefore must be based on estimates of WTP to avoid symptoms that occur with this illness.  Second, a
case of acute bronchitis may last more than one day, whereas it is a day of avoided symptoms that is
typically valued.  Finally, the C-R function used in the benefit analysis for acute bronchitis was estimated
for children, whereas WTP estimates for those symptoms associated with acute bronchitis were obtained
from adults.

In previous benefits analyses, such as in the §812 Prospective analysis (U.S. EPA, 1999b), acute
bronchitis was valued at $59.31 (in 2000 $). This is the midpoint between a low estimate and a high
estimate.  The low estimate is the sum of the midrange values recommended by IEc (1994) for two
symptoms believed to be associated with acute bronchitis: coughing and chest tightness.  The high
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estimate was taken to be twice the value of a minor respiratory restricted activity day.  For a more
complete description of the derivation of this estimate, see Abt Associates (2000, p. 4-30).

A unit value of $59.31 assumes that an episode of acute bronchitis lasts only one day.  However,
this is generally not the case.  More typically, it can last for 6 or 7 days.  We therefore made a simple
adjustment, multiplying the original unit value of $59.31 by 6.  The unit value thus derived and used was
$356 (=$59.31 x 6).  The uncertainty surround this unit value was modeled as a uniform distribution on
the range [$105, $607].  The endpoints of this range are 6 times the low and the high estimates used in the
§812 Prospective analysis, inflated to 2000$. 

4.4.2 Upper Respiratory Symptoms (URS)

Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a
variety of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah
Valley from December 1989 through March 1990.  The children in the Pope et al. study were asked to
record respiratory symptoms in a daily diary, and the daily occurrences of URS and LRS, as defined
above, were related to daily PM10 concentrations.  Pope et al. describe URS as consisting of one or more
of the following symptoms:  runny or stuffy nose; wet cough; and burning, aching, or red eyes.   Levels of
ozone, NO2, and SO2 were reported low during this period, and were not included in the analysis.

The sample in this study is relatively small and is most representative of the asthmatic population,
rather than the general population.  The school-based subjects (ranging in age from 9 to 11) were chosen
based on “a positive response to one or more of three questions: ever wheezed without a cold, wheezed
for 3 days or more out of the week for a month or longer, and/or had a doctor say the ‘child has asthma’
(Pope et al., 1991, p. 669).”  The patient-based subjects (ranging in age from 8 to 72) were receiving
treatment for asthma and were referred by local physicians.  Regression results for the school-based
sample (Pope et al., 1991, Table 5) show PM10 significantly associated with both upper and lower
respiratory symptoms.  The patient-based sample did not find a significant PM10 effect.  The results from
the school-based sample are used here.

Valuing Upper Respiratory Symptoms

Willingness to pay to avoid a day of upper respiratory symptoms is based on symptom-specific
WTPs to avoid those symptoms identified by Pope et al. (1991) as part of the complex of upper
respiratory symptoms. Three contingent valuation studies have estimated WTP to avoid various morbidity
symptoms that are either within the complex defined by Pope et al. (1991), or are similar to those
symptoms.  In each CV study, participants were asked their WTP to avoid a day of each of several
symptoms.  The WTP estimates corresponding to the morbidity symptoms valued in each study are
presented in Exhibit 4-18.

The three individual symptoms listed in Exhibit 4-18 that were identified as most closely
matching those listed by Pope, et al. (1991) for upper respiratory symptoms are cough, head/sinus
congestion, and eye irritation, corresponding to “wet cough,” “runny or stuffy nose,” and “burning,
aching or red eyes,” respectively.  A day of upper respiratory symptoms could consist of any one of the
seven possible “symptom complexes” consisting of at least one of these three symptoms.  These seven
possible symptom complexes are presented in Exhibit 4-19.  We assumed that each of these seven



34   With empirical evidence, we could presumably improve the accuracy of the probabilities of occurrence of each type of URS. 
Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default” assumption.
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complexes is equally likely.34  The point estimate of WTP is just an average of the seven estimates of
WTP for the different complexes.  In the absence of information surrounding the frequency with which
each of the seven occurs, we assumed a continuous uniform distribution between the lowest and highest
values in Exhibit 4-19.

Exhibit 4-18.  Median WTP Estimates and Derived Midrange Estimates (in 2000 $)

Symptom a Dickie et al. (1987) Tolley et al. (1986) Loehman et al. (1979) Mid-Range Estimate

Throat congestion 4.97 21.54 - 13.18

Head/sinus congestion 5.80 23.20 10.80 13.18

Coughing 1.66 18.24 6.56 9.23

Eye irritation - 20.70 - 20.70

Headache 1.66 33.15 - 13.18

Shortness of breath 0.00 - 13.92 6.58

Pain upon deep inhalation (PDI) 5.82 - - 5.82

Wheeze 3.32 - - 3.32

Coughing up phlegm 3.63 b - -  3.63 

Chest tightness 8.30 - - 8.30
a All estimates are WTP to avoid one day of symptom.  Midrange estimates were derived by IEc (1993).
b 10% trimmed mean.

 

Exhibit 4-19.  Estimates of WTP to Avoid Upper Respiratory Symptoms (2000 $)

Symptom Combinations Identified as URS by Pope et al. (1991) WTP to Avoid
Symptom(s)

Coughing $9.23

Head/Sinus Congestion $13.18

Eye Irritation $20.70

Coughing, Head/Sinus Congestion $22.40

Coughing, Eye Irritation $29.93

Head/Sinus Congestion, Eye Irritation $33.88

Coughing, Head/Sinus Congestion, Eye Irritation $43.11

Average: $24.63 

Based on values reported in Exhibit 4-18.

4.4.3 Lower Respiratory Symptoms



35   Because cough is a symptom in some of the upper respiratory symptom clusters as well as some of the lower respiratory
symptom clusters, there is the possibility of a very small amount of double counting – if the same individual were to have an
occurrence of upper respiratory symptoms which included cough and an occurrence of lower respiratory symptoms which included
cough both on exactly the same day.  Because this is probably a very small probability occurrence, the degree of double counting is
likely to be very minor.  Moreover, because upper respiratory symptoms is applied only to asthmatics ages 9-11 (a very small
population), the amount of potential double counting should be truly negligible.

36   As with URS, if we had empirical evidence we could improve the accuracy of the probabilities of occurrence of each type of
LRS.  Lacking empirical evidence, however, a uniform distribution seems the most reasonable “default” assumption.
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Lower respiratory symptoms include symptoms such as cough, chest pain, phlegm, and wheeze. 
To estimate the link between PM2.5 and lower respiratory symptoms, we used a study by Schwartz et al.
(1994).  Schwartz et al. (1994) used logistic regression to link lower respiratory symptoms in children
with SO2, NO2, ozone, PM10, PM2.5, sulfate and H+ (hydrogen ion).  Children were selected for the study if
they were exposed to indoor sources of air pollution: gas stoves and parental smoking.  The study
enrolled 1,844 children into a year-long study that was conducted in different years (1984 to 1988) in six
cities.  The students were in grades two through five at the time of enrollment in 1984.  By the completion
of the final study, the cohort would then be in the eighth grade (ages 13-14); this suggests an age range of
7 to 14.

In single pollutant models SO2, NO2, PM2.5, and PM10 were significantly linked to cough.  In two-
pollutant models, PM10 had the most consistent relationship with cough; ozone was marginally
significant, controlling for PM10.  In models for upper respiratory symptoms, they reported a marginally
significant association for PM10.  In models for lower respiratory symptoms, they reported significant
single-pollutant models, using SO2, O3, PM2.5, PM10, SO4, and H+.  The PM2.5 C-R function is based on the
single pollutant model reported in Schwartz et al. (1994, Table 5).

Valuing Lower Respiratory Symptoms

Schwartz et al. (1994, p. 1235) defined lower respiratory symptoms as at least two of the
following symptoms: cough, chest pain, phlegm, and wheeze.  To value this combination of symptoms,
we used the same method as we did for upper respiratory symptoms.  We chose those individual health
effects that seem most consistent with lower respiratory symptoms, we derived all of the possible
combinations of these symptoms, and then we valued these combinations.

The symptoms for which WTP estimates are available that reasonably match lower respiratory
symptoms are: cough (C), chest tightness (CT), coughing up phlegm (CP), and wheeze (W).   A day of
lower respiratory symptoms could consist of any one of the 11 combinations of at least two of these four
symptoms, as displayed in Exhibit 4-20.35  We assumed that each of the eleven types of lower respiratory
symptoms is equally likely,36 and the mean WTP is the average of the WTPs over all combinations. 
Finally, in the absence of information about the frequency of each of the eleven types of lower respiratory
symptoms, the uncertainty analysis for LRS assumes a continuous uniform distribution on the range from
the lowest to the highest value in Exhibit 4-20.

Note that the WTP estimates are based on studies which considered the value of a day of avoided
symptoms, whereas the Schwartz et al. study used as its measure a case of LRS.  Because a case of LRS
usually lasts at least one day, and often more, our estimate is a conservative one.
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Exhibit 4-20.  Estimates of WTP to Avoid Lower Respiratory Symptoms (2000 $)

Symptom Combinations Identified as LRS by Schwartz et al. (1994) WTP to Avoid
Symptoms

Coughing, Chest Tightness $17.52

Coughing, Coughing Up Phlegm $12.84

Coughing, Wheeze $12.54

Chest Tightness, Coughing Up Phlegm $11.92

Chest Tightness, Wheeze $11.62

Coughing Up Phlegm, Wheeze $6.95

Coughing, Chest Tightness, Coughing Up Phlegm $21.15

Coughing, Chest Tightness, Wheeze $20.85

Coughing, Coughing Up Phlegm, Wheeze $16.17

Chest Tightness, Coughing Up Phlegm, Wheeze $15.25

Coughing, Chest Tightness, Coughing Up Phlegm, Wheeze $24.47

Average: $15.57

Based on values reported in Exhibit 4-18.

Issues in the Valuation of URS and LRS

The point estimates derived for mean WTP to avoid a day of URS and a case of LRS are based on
the assumption that WTPs are additive.  For example, if WTP to avoid a day of cough is $9.23, and WTP
to avoid a day of shortness of breath is $6.58, then WTP to avoid a day of both cough and shortness of
breath is $15.81.  If there are no synergistic effects among symptoms, then it is likely that the marginal
utility of avoiding symptoms decreases with the number of symptoms being avoided.  If this is the case,
adding WTPs would tend to overestimate WTP for avoidance of multiple symptoms.  However, there
may be synergistic effects– that is, the discomfort from two or more simultaneous symptoms may exceed
the sum of the discomforts associated with each of the individual symptoms.  If this is the case, adding
WTPs would tend to underestimate WTP for avoidance of multiple symptoms.  It is also possible that
people may experience additional symptoms for which WTPs are not available, again leading to an
underestimate of the correct WTP.  However, for small numbers of symptoms, the assumption of
additivity of WTPs is unlikely to result in substantive bias.

There are also three sources of uncertainty in the valuation of both URS and LRS: (1) an
occurrence of URS or of LRS may be comprised of one or more of a variety of symptoms (i.e., URS and
LRS are each potentially a “complex of symptoms”), so that what is being valued may vary from one
occurrence to another; (2) for a given symptom, there is uncertainty about the mean WTP to avoid the
symptom; and (3) the WTP to avoid an occurrence of multiple symptoms may be greater or less than the
sum of the WTPs to avoid the individual symptoms. 

Information about the degree of uncertainty from either the second or the third source is not
available.  The first source of uncertainty, however, is addressed because an occurrence of URS or LRS
may vary in symptoms.  For example, seven different symptom complexes that qualify as URS, as
defined by Pope et al. (1991), were identified above.  The estimates of WTP to avoid these seven different
kinds of URS range from $9.23 (to avoid an occurrence of URS that consists of only coughing) to $43.11
(to avoid an occurrence of URS that consists of coughing plus head/sinus congestion plus eye irritation). 



Abt Associates Inc. April 20034-41

There is no information, however, about the frequency of each of the seven types of URS among all
occurrences of URS.

Because of insufficient information to adequately estimate the distributions of the estimators of
WTP for URS and LRS, as a rough approximation, a continuous uniform distribution over the interval
from the smallest point estimate to the largest is used, as noted above. 

Alternatively, a discrete distribution of the seven unit dollar values associated with each of the
seven types of URS identified could be used.  This would provide a distribution whose mean is the same
as the point estimate of WTP.  A continuous uniform distribution, however, is probably more reasonable
than a discrete uniform distribution.  The differences between the means of the discrete uniform
distributions (the point estimates) and the means of the continuous uniform distributions are relatively
small, as shown in Exhibit 4-21.

Exhibit 4-21.  Comparison of the Means of Discrete and Continuous Uniform Distributions of WTP
Associated with URS and LRS (2000 $)

Health Endpoint Mean of Discrete Uniform
Distribution (Point Est.)

Mean of Continuous Uniform
Distribution

Upper Respiratory Symptoms $24.64 $26.17

Lower Respiratory Symptoms $15.57 $15.70

4.4.4 Minor Restricted Activity Days

Ostro and Rothschild (1989) estimated the impact of PM2.5 on the incidence of minor restricted
activity days (MRAD) in a national sample of the adult working population, ages 18 to 65, living in
metropolitan areas.  We developed separate coefficients for each year in the analysis (1976-1981), which
were then combined for use in this analysis.  The coefficient used in the C-R function is a weighted
average of the coefficients in Ostro and Rothschild (1989), Table 4, using the inverse of the variance as
the weight.

Valuing Minor Restricted Activity Days

The unit value and uncertainty distribution for MRADs for this analysis were obtained by
adjusting the (rounded) values in 1990 $ used in the §812 Prospective analysis to 2000 $ by multiplying
by 1.3175.  No studies are reported to have estimated WTP to avoid a minor restricted activity day
(MRAD). However, IEc (1993) has derived an estimate of WTP to avoid a minor respiratory restricted
activity day (MRRAD), using WTP estimates from Tolley et al. (1986) for avoiding a three-symptom
combination of coughing, throat congestion, and sinusitis.  This estimate of WTP to avoid a MRRAD, so
defined, is $38.37 (1990 $), or about $38.  Although Ostro and Rothschild (1989) estimated the
relationship between PM2.5 and MRADs, rather than MRRADs (a component of MRADs), it is likely that
most of the MRADs associated with exposure to PM2.5 are in fact MRRADs.  For the purpose of valuing
this health endpoint, then, we assumed that MRADs associated with PM exposure may be more
specifically defined as MRRADs, and therefore used the estimate of mean WTP to avoid a MRRAD.

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day other
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than WLD) will be somewhat arbitrary because the endpoint itself is not precisely defined.  Many
different combinations of symptoms could presumably result in some minor or less minor restriction in
activity.  Krupnick and Kopp (1988) argued that mild symptoms will not be sufficient to result in a
MRRAD, so that WTP to avoid a MRRAD should exceed WTP to avoid any single mild symptom.  A
single severe symptom or a combination of symptoms could, however, be sufficient to restrict activity. 
Therefore WTP to avoid a MRRAD should, these authors argue, not necessarily exceed WTP to avoid a
single severe symptom or a combination of symptoms.  The “severity” of a symptom, however, is
similarly not precisely defined; moreover, one level of severity of a symptom could induce restriction of
activity for one individual while not doing so for another.  The same is true for any particular
combination of symptoms.

Given that there is inherently a substantial degree of arbitrariness in any point estimate of WTP to
avoid a MRRAD (or other kinds of restricted activity days), the reasonable bounds on such an estimate
must be considered.  By definition, a MRRAD does not result in loss of work.  WTP to avoid a MRRAD
should therefore be less than WTP to avoid a WLD.  At the other extreme, WTP to avoid a MRRAD
should exceed WTP to avoid a single mild symptom.  The highest IEc midrange estimate of WTP to
avoid a single symptom is $15.72 (1990 $), or about $16, for eye irritation.  The point estimate of WTP to
avoid a WLD in the benefit analysis is $83 (1990 $).  If all the single symptoms evaluated by the studies
are not severe, then the estimate of WTP to avoid a MRRAD should be somewhere between $16 and $83. 
Because the IEc estimate of $38 falls within this range (and acknowledging the degree of arbitrariness
associated with any estimate within this range), the IEc estimate is used as the mean of a triangular
distribution centered at $38, ranging from $16 to $61.  Adjusting to 2000 $, this is a triangular
distribution centered at $50.55, ranging from $21 to $80.

4.4.5 Work Loss Days

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted
activity days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working
population, ages 18 to 65, living in metropolitan areas.  The annual national survey results used in this
analysis were conducted in 1976-1981.  Ostro reported that two-week average PM2.5 levels were
significantly linked to work-loss days, RADs, and RRADs, however there was some year-to-year
variability in the results.  Separate coefficients were developed for each year in the analysis (1976-1981);
these coefficients were pooled.  The coefficient used in the concentration-response function used here is a
weighted average of the coefficients in Ostro (1987, Table III) using the inverse of the variance as the
weight.

Valuing Work Loss Days

Willingness to pay to avoid the loss of one day of work was estimated by dividing county-
specific median annual wages (GeoLytics Inc., 2002b) by 50 (assuming 2 weeks of vacation) and then by
5, to get county-specific median daily wages.  Valuing the loss of a day’s work at the wages lost is
consistent with economic theory, which assumes that an individual is paid exactly the value of his labor.

The use of the median rather than the mean, however, requires some comment.  If all individuals
in society were equally likely to be affected by air pollution to the extent that they lose a day of work
because of it, then the appropriate measure of the value of a work loss day would be the mean daily wage. 
It is highly likely, however, that the loss of work days due to pollution exposure does not occur with
equal probability among all individuals, but instead is more likely to occur among lower income
individuals than among high income individuals.  It is probable, for example, that individuals who are
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vulnerable enough to the negative effects of air pollution to lose a day of work as a result of exposure
tend to be those with generally poorer health care. Individuals with poorer health care have, on average,
lower incomes.

To estimate the average lost wages of individuals who lose a day of work because of exposure to
PM pollution, then, would require a weighted average of all daily wages, with higher weights on the low
end of the wage scale and lower weights on the high end of the wage scale.  Because the appropriate
weights are not known, however, the median wage was used rather than the mean wage.  The  median is
more likely to approximate the correct value than the mean because means are highly susceptible to the
influence of large values in the tail of a distribution (in this case, the small percentage of very large
incomes in the United States), whereas the median is not susceptible to these large values.  We currently
have insufficient information to characterize the uncertainty surrounding any county-specific estimate for
WLD.

4.4.6 School Loss Days

Children may also be absent from school due to respiratory or other diseases caused by exposure
to air pollution.  Most studies examining school absence rates have found little or no association with
PM2.5, but several studies have found a significant association between ozone levels and school absence
rates.  We use two recent studies, Gilliland et al. (2001) and Chen et al. (2000) to estimate changes in
absences (school loss days) due to changes in ozone levels.  The Gilliland et al. study estimated the
incidence of new periods of absence, while the Chen et al. study examined absence on a given day.  We
convert the Gilliland estimate to days of absence by multiplying the absence periods by the average
duration of an absence.    We estimate an average duration of school absence of 1.6 days by dividing the
average daily school absence rate from Chen et al. (2000) and Ransom and Pope (1992) by the episodic
absence rate from Gilliland et al. (2001).  This provides estimates from Chen et al. (2000) and Gilliland et
al. (2000) which can be pooled to provide an overall estimate.

Valuing School Loss Days

To value a school absence, (1) we estimated the probability that, if a school child stays home
from school, a parent will have to stay home from work to care for the child, and (2) we valued the lost
productivity at the person’s wage.  To do this, we first estimated the proportion of families with school-
age children in which both parents work, and then valued a school loss day as the probability of a work
loss day resulting from a school loss day (i.e., the proportion of households with school-age children in
which both parents work) times a measure of lost wages.  This approach is likely to understate the value
of a school loss day in two ways.  First, it omits WTP to avoid the symptoms/illness which resulted in the
school absence.  Second, it effectively gives zero value to school absences which do not result in a work
loss day.  We used this method, however, in the absence of a preferable method.  

From the U.S. Census Bureau, Statistical Abstract of the United States: 2001, we obtained (1) the
numbers of single, married, and “other” (i.e., widowed, divorced, or separated) women with children in
the workforce, and (2) the rates of participation in the workforce of single, married, and “other” women
with children.  From these two sets of statistics, we calculated a weighted average participation rate of
72.85 percent (Exhibit 4-22). 

Our estimated daily lost wage (if a mother must stay at home with a sick child) is based on the
median weekly wage among women age 25 and older in 2000 (U.S. Census Bureau, Statistical Abstract
of the United States: 2001, Section 12: Labor Force, Employment, and Earnings, Table No. 621).  This



37   The relationship estimated by Crocker and Horst (1981) between wages and ozone is a log-log relationship.  Therefore the
elasticity of wages with respect to ozone is a constant, equal to the coefficient of log ozone in the model.

38   Statistical Abstract of the United States, Table 621,  “Full-Time Wage and Salary Workers – Number and Earnings: 1985 to
2000" (Source of data in table: U.S. Bureau of Labor Statistics, Bulletin 2307 and Employment and Earnings, monthly).
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median weekly wage is $551.  Dividing by 5 gives an estimated median daily wage of $103.  The
expected loss in wages due to a day of school absence in which the mother would have to stay home with
her child is estimated as the probability that the mother is in the workforce times the daily wage she
would lose if she missed a day = 72.85% of $103, or $75.  We currently have insufficient information to
characterize the uncertainty surrounding this estimate.

Exhibit 4-22.  Women with Children: Number and Percent in the Labor Force, 2000, and Weighted
Average Participation Rate

Category

Women in Labor
Force

 (millions) a

Participation Rate 
(%) a

Implied Total
Number in

Population (in
millions)

Implied Percent in
Population

Population-
Weighted Average
Participation Rate

(1) (2) (3) = (1)/(2) (4) [=sum (2)*(4) over
rows] 

Single 3.1 73.9% 4.19 11.84%

Married 18.2 70.6% 25.78 72.79%

Other b 4.5 82.7% 5.44 15.36%

Total 35.42 72.85%
a Source: U.S. Census Bureau, Statistical Abstract of the United States: 2001, Section 12: Labor Force, Employment, and
Earnings, Table No. 577.
b Widowed, divorced, or separated.

4.4.7 Worker Productivity

To monetize benefits associated with increased worker productivity resulting from improved
ozone air quality, we used information reported in Crocker and Horst (1981) and summarized in EPA
(1994).  Crocker and Horst examined the impacts of ozone exposure on the productivity of outdoor citrus
workers.  The study measured productivity impacts as the change in income associated with a change in
ozone exposure, given as the elasticity of income with respect to ozone concentration (-0.1427).37  The
reported elasticity translates a ten percent reduction in ozone to a 1.4 percent increase in income.  

Previous EPA analyses used a unit value of  $1.00 per worker per 10% change in ozone per day,
based on a U.S. Census Bureau estimate of “average daily income of outdoor workers engaged in
strenuous activity” of $96.00 (in 2000$).  We were unable to find the same category in tables of more
recent U.S. Census Bureau estimates.  The most similar category we were able to find was “median daily
earnings of workers in farming, forestry and fishing.”38  Using this category, the value of a day of work
for outdoor workers is $68 (in 2000$).  From this we derived a unit value of $0.95 per worker per 10%
change in ozone per day.  We applied this unit value to county-specific numbers of workers in farming,
forestry, and fishing, obtained from the 2000 U.S. Census.  The median daily income for outdoor workers
is a national estimate, however.  We adjust this estimate to reflect regional variations in income using a
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factor based on the ratio of national median household income divided by a county’s median household
income.  No information was available for quantifying the uncertainty associated with the central
valuation estimate.  Therefore, no uncertainty analysis was conducted for this endpoint.

4.4.8 Sensitivity Calculation: Asthmatic Studies

The base analysis does not include C-R functions to estimate asthma-related symptoms.  EPA is
currently evaluating how air pollution related symptoms in the asthmatic population should be
incorporated into the overall benefits analysis.  Clearly, studies of the general population also include
asthmatics, so estimates based solely on the asthmatic population cannot be directly added to the general
population numbers without double-counting.  In one specific case, upper respiratory symptoms in
children, the only study available was limited to asthmatic children, so this endpoint is included in the
calculation of total benefits.  However, other endpoints, such as lower respiratory symptoms, are
estimated for the total population of children.

Given the increased susceptibility of the asthmatic population, it is of interest to understand better
the specific impacts on asthmatics.  We are providing a separate set of estimated health impacts for
asthmatic populations, listed it Exhibit 4-23, with the caveat that these are not additive, nor can they be
easily combined with other endpoints to derive total benefits.  They are provided only to highlight the
potential impacts on a susceptible population.



39  Krupnick et al. (1990) list 13 specific “symptoms or conditions”: head cold, chest cold, sinus trouble, croup, cough with phlegm,
sore throat, asthma, hay fever, doctor-diagnosed ear infection, flu, pneumonia, bronchitis, and bronchiolitis.  The other six symptoms
or conditions are not specified.

40  Details of the derivation of the C-R function based on the model used by Krupnick et al. (1990) are presented in Abt Associates
(1999, p.  A-40).
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Exhibit 4-23.  Studies Examining Health Impacts in the Asthmatic Population

Endpoint Definition Pollutant Study Study Population

Asthma Attack Indicators

Shortness of Breath prevalence of shortness of breath;
incidence of shortness of breath

PM2.5 Ostro et al. (2001) African American
asthmatics, 8-13

Cough prevalence of cough; incidence of
cough

PM2.5 Ostro et al. (2001) African American
asthmatics, 8-13

Wheeze prevalence of wheeze; incidence
of wheeze

PM2.5 Ostro et al. (2001) African American
asthmatics, 8-13

Asthma Exacerbation $1 mild asthma symptom:
wheeze, cough, chest tightness,
shortness of breath)

PM10, PM1.0 Yu et al. (2000) Asthmatics, 5-13

Cough prevalence of cough PM10 Vedal et al. (1998) Asthmatics, 6-13

Other symptoms/illness endpoints

Upper Respiratory
Symptoms

$1 of the following: runny or
stuffy nose; wet cough; burning,
aching, or red eyes 

PM10 Pope et al. (1991) Asthmatics 9-11

Moderate or Worse
Asthma

probability of moderate (or
worse) rating of overall asthma
status

PM2.5 Ostro et al. (1991) Asthmatics, all ages

Acute Bronchitis $1 episodes of bronchitis in the
past 12 months

PM2.5 McConnell et al. (1999) Asthmatics, 9-15*

Phlegm “other than with colds, does this
child usually seem congested in
the chest or bring up phlegm?”

PM2.5 McConnell et al. (1999) Asthmatics, 9-15*

Asthma Attacks respondent-defined asthma attack PM2.5,
ozone

Whittemore and Korn
(1980)

Asthmatics, all ages

4.4.9 Sensitivity Calculations: “Any-of-19 Respiratory Symptoms”

Krupnick et al. (1990) estimated the impact of coefficient of haze (COH, a measure of particulate
matter concentrations), ozone and SO2 on the incidence of any of 19 symptoms or conditions in the adult
population, ages 18 to 65.39  They used a logistic regression model that takes into account whether a
respondent was well or not the previous day.  A key difference between this and the usual logistic model
is that the model they used includes a lagged value of the dependent variable.  This makes the derivation
of a C-R function somewhat more complicated than the usual logistic regression.40

 The presence of “any of 19 acute respiratory symptoms” is a somewhat subjective health effect
used by Krupnick et al. (1990).  Moreover, not all 19 symptoms are listed in the Krupnick et al. study.  It
is therefore not clear exactly what symptoms were included in the study.  Even if all 19 symptoms were
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known, it is unlikely that WTP estimates could be obtained for all of the symptoms.  Finally, even if all
19 symptoms were known and WTP estimates could be obtained for all 19 symptoms, the assumption of
additivity of WTPs becomes tenuous with such a large number of symptoms.  The likelihood that all 19
symptoms would occur simultaneously, moreover, is very small. 

Valuing “Any of 19 Respiratory Symptoms”

The unit value and uncertainty distribution for “any of 19 respiratory symptoms” for this analysis
were obtained by adjusting the values in 1990 $ used in the §812 Prospective analysis to 2000 $ by
multiplying by 1.3175.  Acute respiratory symptoms must be either upper respiratory symptoms or lower
respiratory symptoms.  In the absence of further knowledge about which of the two types of symptoms is
more likely to occur among the “any of 19 acute respiratory symptoms,” we assumed that they occur with
equal probability.  Because this health endpoint may also consist of combinations of symptoms, it was
also assumed that there is some (smaller) probability that upper and lower respiratory symptoms occur
together.  To value avoidance of a day of “the presence of any of 19 acute respiratory symptoms” we
therefore assumed that this health endpoint consists either of URS, or LRS, or both.  We also assumed
that it is as likely to be URS as LRS and that it is half as likely to be both together.  That is, it was
assumed that “the presence of any of 19 acute respiratory symptoms” is a day of URS with 40 percent
probability, a day of LRS with 40 percent probability, and a day of both URS and LRS with 20 percent
probability.  Using the point estimates of WTP to avoid a day of URS and LRS derived above, the point
estimate of WTP to avoid a day of “the presence of any of 19 acute respiratory symptoms” is:

(0.40)($24.64) + (0.40)($15.57) + (0.20)($24.64 + $15.57) = $24.12 (2000 $).

Because this health endpoint is only vaguely defined, and because of the lack of information on
the relative frequencies of the different combinations of acute respiratory symptoms that might qualify as
“any of 19 acute respiratory symptoms,” the unit dollar value derived for this health endpoint must be
considered only a rough approximation.

The sources of uncertainty in the valuation of LRS and URS described above similarly exist in
the valuation of this health endpoint.  In particular, (1) “the presence of any of 19 acute respiratory
symptoms” may be comprised of one or more of a variety of symptoms, so that what is being valued may
vary from one occurrence to another; (2) for a given symptom, there is uncertainty about the mean WTP
to avoid the symptom; and (3) the WTP to avoid an occurrence of multiple symptoms may be greater or
less than the sum of the WTPs to avoid the individual symptoms.  

To characterize the uncertainty surrounding the estimated value of avoiding “any of 19 acute
respiratory symptoms,” we used the distributions described above for the input components, URS and
LRS.  On each iteration of a Monte Carlo procedure, URS was chosen with 40 percent probability, LRS
was chosen with 40 percent probability and URS+LRS was chosen with 20 percent probability.  Given
the choice, a dollar value was randomly selected from the appropriate distribution.  For example, if URS
was selected, a dollar value was selected from the continuous uniform distribution for URS.



41   Hereafter referred to as Class I areas, which are defined as areas of the country such as national parks, national wilderness areas,
and national monuments that have been set aside under Section 162(a) of the Clean Air Act to receive the most stringent degree of
air quality protection.  Class I federal lands fall under the jurisdiction of three federal agencies, the National Park Service, the Fish
and Wildlife Service, and the Forest Service.

42   The Constant Elasticity of Substitution utility function has been chosen for use in this analysis due to its flexibility when
illustrating the degree of substitutability present in various economic relationships (in this case, the tradeoff between income and
improvements in visibility).
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5 Welfare Benefits

This analysis considers three types of benefits that are loosely termed “welfare” benefits.  These
include visibility improvements, reductions in agricultural crop damage, and reduced household soiling. 
We consider each in turn.

5.1 Visibility Benefits

Visibility degradation estimates used in this analysis are generated by the REMSAD model.  To
conduct the visibility benefits analysis, however, we need visibility data at the county level.  To convert
REMSAD visibility data from the square grid to the county level, we use the following rule: if a county
center falls within a given REMSAD grid cell, we assign that REMSAD grid cell's visibility values to that
county.  Because the modeled air quality-related changes in visibility are directly used in the benefits
analysis, the methodology for predicting visibility changes is not discussed here.  The visibility estimation
procedure is described in detail in EPA (2000b), and is based on the methods in Sisler (1996).

Economic benefits may result from two broad categories of visibility changes: (1) changes in
“residential” visibility – i.e., the visibility in and around the locations where people live; and (2) changes
in “recreational” visibility at Class I areas – i.e., visibility at Class I national parks and wilderness areas.41 
In this analysis, only those recreational benefits in Class I areas that have been directly studied (in
California, the Southeast, and the Southwest) are included in the base presentation of benefits; residential
benefits and recreational benefits in all U.S. Class I areas are presented as alternative calculations of
visibility benefits.

Within the category of recreational visibility, further distinctions have been made.  There is
evidence (Chestnut and Rowe, 1990a) that an individual’s WTP for improvements in visibility at a Class I
area is influenced by whether it is in the region in which the individual lives, or whether it is somewhere
else.  In general people appear to be willing to pay more for visibility improvements at parks and
wilderness areas that are “in-region” than at those that are “out-of-region.”  This is plausible, because
people are more likely to visit, be familiar with, and care about parks and wilderness areas in their own
part of the country.

To value estimated visibility changes, we are using an approach consistent with economic theory. 
Below we discuss an application of the Constant Elasticity of Substitution (CES) utility function
approach42 to value both residential visibility improvements and visibility improvements at Class I areas
in the United States.  This approach is based on the preference calibration method developed by Smith et
al. (2002).  The presentation of this methodology is organized as follows.  The basic utility model is
presented in Section 5.1.1.  In Section 5.1.2 we discuss the measurement of visibility, and the mapping
from environmental “bads” to environmental “goods.”  In Sections 5.1.3 and 5.1.4 we summarize the
information that is available to estimate the parameters of the model corresponding to visibility at in-



43  We remind the reader that, although residential and recreational visibility benefits estimation is discussed simultaneously in this
section, benefits are calculated and presented separately for each visibility category.
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region and out-of-region Class I areas, and visibility in residential areas, respectively, and we describe the
methods used to estimate these parameters.  Section 5.1.5 synthesizes the results.

5.1.1 Basic Utility Model

We begin with a CES utility function in which a household derives utility from 

(1) “all consumption goods,” X, 
(2) visibility in the residential area in which the household is located (“residential visibility”),43 
(3) visibility at Class I areas in the same region as the household (“in-region recreational

visibility”), and 
(4) visibility at Class I areas outside the household’s region (“out-of-region recreational

visibility”).  

There are a total of six regions being considered, so there are 5 regions for which any household is out-of-
region.  The utility function of a household in the nth residential area and the ith region of the country is:
       

where
Zn = the level of visibility in the nth residential area;
Qik = the level of visibility at the kth in-region park (i.e., the kth park in the ith region);
Qjk = the level of visibility at the kth park in the jth region ( for which the household is out-of-

region), j…i;
Ni = the number of Class I areas in the ith region;
Nj = the number of Class I areas in the jth region (for which the household is out-of-region),

j…i; and 

2, the (’s and *’s are parameters of the utility function corresponding to the visibility levels at residential
areas, and at in-region and out-of-region Class I areas, respectively.  In particular, the (ik's are the
parameters corresponding to visibility at in-region Class I areas; the *1’s are the parameters corresponding
to visibility at Class I areas in region 1 (California), if i…1; the *2’s are the parameters corresponding to
visibility at Class I areas in region 2 (Colorado Plateau), if i…2, and so forth.  Because the model assumes
that the relationship between residential visibility and utility is the same everywhere, there is only one 2. 
The parameter D in this CES utility function is an important determinant of the slope of the marginal WTP
curve associated with any of the environmental quality variables.  When D=1, the marginal WTP curve is
horizontal.  When D<1, it is downward sloping. 

The household’s budget constraint is:
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where m is income, and p is the price of X.  Without loss of generality, set p = 1.  The only choice
variable is X.  The household maximizes its utility by choosing X=m.  The indirect utility function for a
household in the nth residential area and the ith region is therefore

where Q denotes the vector of vectors, Q1, Q2, Q3, Q4, Q5, and Q6, and the unsubscripted ( and * denote
vectors as well.

Given estimates of D, 2, the (’s and the *’s, the household’s utility function and the
corresponding WTP functions are fully specified. The household’s WTP for any set of changes in the
levels of visibility at in-region Class I areas, out-of-region Class I areas, and the household’s residential
area can be shown to be:

The household’s WTP for a single visibility improvement will depend on its order in the series of
visibility improvements the household is valuing.  If it is the first visibility improvement to be valued, the
household’s WTP for it follows directly from the previous equation.  For example, the household’s WTP
for an improvement in visibility at the first in-region park, from Qi1 = Q0i1 to Qi1 = Q1i1, is

if this is the first (or only) visibility change the household values.

5.1.2 Measure of Visibility: Environmental “Goods” Versus “Bads”

In the above model, Q and Z are environmental “goods.” As the level of visibility increases,
utility increases.  The utility function and the corresponding WTP function both have reasonable
properties.  The first derivative of the indirect utility function with respect to Q (or Z) is positive; the
second derivative is negative.  WTP for a change from Q0 to a higher (improved) level of visibility, Q1, is
therefore a concave function of Q1, with decreasing marginal WTP.
 

The measure of visibility that is currently preferred by air quality scientists is the deciview, which
increases as visibility decreases.  Deciview, in effect, is a measure of the lack of visibility.  As deciviews
increase, visibility, and therefore utility, decreases.  The deciview, then, is a measure of an environmental
“bad.”  There are many examples of environmental “bads” – all types of pollution are environmental
“bads.”  Utility decreases, for example, as the concentration of particulate matter in the atmosphere
increases.  

One way to value decreases in environmental bads is to consider the “goods” with which they are
associated, and to incorporate those goods into the utility function.  In particular, if B denotes an
environmental “bad,” such that:



44   There may be more than one “good” related to a given environmental “bad.”  To simplify the discussion, however, we assume
only a single “good.”

Q e PM= −1 α β .

45   Another example of an environmental “bad” is particulate matter air pollution (PM). The relationship between survival
probability (Q) and the ambient PM level is generally taken to be of the form

where " denotes the mortality rate (or level) when there is no ambient PM (i.e., when PM=0).  However, " is implicitly a function of
all the factors other than PM that affect mortality.  As these factors change (e.g., from one location to another), " will change (just as
visual range changes as light angle changes).  It is therefore possible to have many values of Q corresponding to a given value of
PM, as the values of " vary.
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and the environmental “good,” Q, is a function of B,

then the environmental “bad” can be related to utility via the corresponding environmental “good”:44

The relationship between Q and B, F(B), is an empirical relationship that must be estimated.

There is a potential problem with this approach, however.  If the function relating B and Q is not
the same everywhere (i.e., if for a given value of B, the value of Q depends on other factors as well), then
there can be more than one value of the environmental good corresponding to any given value of the
environmental bad, and it is not clear which value to use.  This has been identified as a problem with
translating deciviews (an environmental “bad”) into visual range (an environmental “good”).  It has been
noted that, for a given deciview value, there can be many different visual ranges, depending on the other
factors that affect visual range – such as light angle and altitude.  We note here, however, that this
problem is not unique to visibility, but is a general problem when trying to translate environmental “bads”
into “goods.”45

In order to translate deciviews (a “bad”) into visual range (a “good”), we use a relationship
derived by Malm and Pitchford (1994) in which

where DV denotes deciview and VR denotes visual range (in kilometers).  Solving for VR as a function
of DV yields



46   Ideally, we would want the location- , time-, and meteorological condition-specific relationships between deciviews and visual
range, which could be applied as appropriate.  This is probably not feasible, however.
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This conversion is based on specific assumptions characterizing the “average” conditions of those factors,
such as light angle, that affect visual range.  To the extent that specific locations depart from the average
conditions, the relationship will be an imperfect approximation.46

5.1.3 Estimating the Parameters for Visibility at Class I Areas: the (’s and *’s

As noted in Section 2, if we consider a particular visibility change as the first or the only
visibility change valued by the household, the household’s WTP for that change in visibility can be
calculated, given income (m), the “shape” parameter, D, and the corresponding recreational visibility
parameter.  For example, a Southeast household’s WTP for a change in visibility at in-region parks
(collectively) from Q1 = Q01 to Q1 = Q11 is:

if this is the first (or only) visibility change the household values.

Alternatively, if we have estimates of m as well as WTP1
in and WTP1

out of in-region and out-of-
region households, respectively, for a given change in visibility from Q01 to Q11 in Southeast parks, we
can solve for (1 and *1 as a function of our estimates of m, WTP1

in and WTP1
out, for any given value of D. 

Generalizing, we can derive the values of ( and * for the jth region as follows:

and

Chestnut and Rowe (1990a) and Chestnut (1997) estimated WTP (per household) for specific
visibility changes at national parks in three regions of the United States – both for households that are in-
region (in the same region as the park) and for households that are out-of-region.  The Chestnut and Rowe
study asked study subjects what they would be willing to pay for each of three visibility improvements in
the national parks in a given region.  Study subjects were shown a map of the region, with dots indicating
the locations of the parks in question.  The WTP questions referred to the three visibility improvements in
all the parks collectively; the survey did not ask subjects’ WTP for these improvements in specific parks
individually.  Responses were categorized according to whether the respondents lived in the same region
as the parks in question (“in-region” respondents) or in a different region (“out-of-region” respondents).
The areas for which in-region and out-of-region WTP estimates are available from Chestnut and Rowe
(1990a), and the sources of benefits transfer-based estimates that we employ in the absence of estimates,
are summarized in Exhibit 5-1.  In all cases, WTP refers to WTP per household.
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Exhibit 5-1.  Available Information on WTP for Visibility Improvements in National Parks

Region of Park
Region of Household

In-Regiona Out-of-Regionb

1. California WTP estimate from study WTP estimate from study

2. Colorado Plateau WTP estimate from study WTP estimate from study

3. Southeast United States WTP estimate from study WTP estimate from study

4. Northwest United States (based on benefits transfer from California)

5. Northern Rockies (based on benefits transfer from Colorado Plateau)

6. Rest of United States (based on benefits transfer from Southeast U.S.)

a In-region” WTP is WTP for a visibility improvement in a park in the same region as that in which the household is located.  For
example, in-region WTP in the “Southeast” row is the estimate of the average Southeast household’s WTP for a visibility
improvement in a Southeast park. 

b Out-of-region” WTP is WTP for a visibility improvement in a park that is not in the same region in which the household is
located.  For example, out-of-region WTP in the “Southeast” row is the estimate of WTP for a visibility improvement in a park in
the Southeast by a household outside of the Southeast.  

In the base calculation of visibility benefits for this analysis, only visibility changes at parks
within visibility regions for which a WTP estimate was available from Chestnut and Rowe (1990a) are
considered (for both in- and out-of-region benefits).  Base estimates will not include visibility benefits
calculated by transferring WTP values to visibility changes at parks not included in the Chestnut and
Rowe study.  Transferred benefits at parks located outside of the Chestnut and Rowe visibility regions
will, however, be included as an alternative calculation.

The values of the parameters in a household’s utility function will depend on where the
household is located.  The region-specific parameters associated with visibility at Class I areas (that is, all
parameters except the residential visibility parameter) are arrayed in Exhibit 5-2.  The parameters in
columns 1-3 can be directly estimated using WTP estimates from Chestnut and Rowe (1990a) (the
columns labeled “Region 1,” “Region 2,” and “Region 3").
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Exhibit 5-2.  Summary of Region-Specific Recreational Visibility Parameters to be Estimated in
Household Utility Functions

Region of
Household

Region of Park

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Region 1 (1
a *2 *3 *4 *5 *6

Region 2 *1 (2 *3 *4 *5 *6

Region 3 *1 *2 (3 *4 *5 *6

Region 4 *1 *2 *3 (4 *5 *6

Region 5 *1 *2 *3 *4 (5 *6

Region 6 *1 *2 *3 *4 *5 (6

a The parameters arrayed in this table are region-specific rather than park-specific or wilderness area-specific.  For example, *1 is
the parameter associated with visibility at “ Class I areas in region 1" for a household in any region other than region 1.  The
benefits analysis must derive Class I area-specific parameters – e.g., *1k, for the kth Class I area in the first region.  

For the three regions covered in Chestnut and Rowe (1990a) (California, the Colorado Plateau,
and the Southeast United States), we can directly use the in-region WTP estimates from the study to
estimate the parameters in the utility functions corresponding to visibility at in-region parks ((1);
similarly, we can directly use the out-of-region WTP estimates from the study to estimate the parameters
for out-of-region parks (*1).  For the other three regions not covered in the study, however, we must rely
on benefits transfer to estimate the necessary parameters.    

While Chestnut and Rowe (1990a) provide useful information on households’ WTP for visibility
improvements in national parks, there are several significant gaps remaining between the information
provided in that study and the information necessary for the benefits analysis.  First, as noted above, the
WTP responses were not park-specific, but only region-specific.  Because visibility improvements vary
from one park in a region to another, the benefits analysis must value park-specific visibility changes. 
Second, not all Class I areas in each of the three regions considered in the study were included on the
maps shown to study subjects.  Because the focus of the study was primarily national parks, most Class I
wilderness areas were not included.  Third, only three regions of the United States were included, leaving
the three remaining regions without direct WTP estimates.  

In addition, Chestnut and Rowe (1990a) elicited WTP responses for three different visibility
changes, rather than a single change.  In theory, if the CES utility function accurately describes household
preferences, and if all households in a region have the same preference structure, then households’ three
WTP responses corresponding to the three different visibility changes should all produce the same value
of the associated recreational visibility parameter, given a value of D and an income, m.  In practice, of
course, this is not the case.  

In addressing these issues, we take a three-phase approach:

(1) We estimate region-specific parameters for the region in the modeled domain covered by
Chestnut and Rowe (1990a) (California, the Colorado Plateau, and the Southeast) – (1, (2, and (3  and *1,
*2, and *3.  (2) We infer region-specific parameters for those regions not covered by the Chestnut and
Rowe study (the Northwest United States, the Northern Rockies, and the rest of the U.S.) –  (4, (5, and (6
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and *4, *5, and *6.  (3) We derive park- and wilderness area-specific parameters within each region ((1k
and *1k, for k=1, ..., N1; (2k and *2k, for k=1, ..., N2; and so forth).

The question that must be addressed in the first phase is how to estimate a single region-specific
in-region parameter and a single region-specific out-of-region parameter for each of the three regions
covered in Chestnut and Rowe (1990a) from study respondents’ WTPs for three different visibility
changes in each region.  All parks in a region are treated collectively as if they were a single “regional
park” in this first phase.  In the second phase, we infer region-specific recreational visibility parameters
for regions not covered in the Chestnut and Rowe study (the Northwest United States, the Northern
Rockies, and the rest of the U.S.).  As in the first phase, we ignore the necessity to derive park-specific
parameters at this phase.  Finally, in the third phase, we derive park- and wilderness area-specific
parameters for each region.

Estimating Region-Specific Recreational Visibility Parameters for the Region Covered in the
Chestnut and Rowe Study (Regions 1, 2, and 3) 

Given a value of D and estimates of m and in-region and out-of-region WTPs for a change from
Q0 to Q1 in a given region, the in-region parameter, (, and the out-of-region parameter, *, for that region
can be solved for.  Chestnut and Rowe (1990a), however, considered not just one, but three visibility
changes in each region, each of which results in a different calibrated ( and a different calibrated *, even
though in theory all the (’s should be the same and similarly, all the *’s should be the same.  For each
region, however, we must have only a single ( and a single *.  

Denoting  as our estimate of  ( for the jth region, based on all three visibility changes, we$γ j

chose to best predict the three WTPs observed in the study for the three visibility improvements in the$γ j

jth region.  First, we calculated , i=1, 2, 3, corresponding to each of the three visibility improvements$γ ji

considered in the study.  Then, using a grid search method beginning at the average of the three ’s , we$γ ji

chose to minimize the sum of the squared differences between the WTPs we predict using and the$γ j $γ j

three region-specific WTPs observed in the study.  That is, we selected  to minimize:$γ j

where WTPij and WTPij( ) are the observed and the predicted WTPs for a change in visibility in the jth$γ j

region from Q0 = Q0i to Q1= Q1i, i=1, ..., 3.  An analogous procedure was used to select an optimal *, for
each of the three regions in the Chestnut and Rowe study.

Inferring Region-Specific Recreational Visibility Parameters for Regions Not Covered in the
Chestnut and Rowe Study (Regions 4, 5, and 6) 

One possible approach to estimating region-specific parameters for regions not covered by
Chestnut and Rowe (1990a) ((4, (5, and (6 and *4, *5, and *6) is to simply assume that households’ utility
functions are the same everywhere, and that the environmental goods being valued are the same – e.g.,
that a change in visibility at national parks in California is the same environmental good to a Californian
as a change in visibility at national parks in Minnesota is to a Minnesotan.  



47   We acknowledge that reliance on visitation rates does not get at nonuse value.
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For example, to estimate *4 in the utility function of a California household, corresponding to
visibility at national parks in the Northwest United States, we might assume that out-of-region WTP for a
given visibility change at national parks in the Northwest United States is the same as out-of-region WTP
for the same visibility change at national parks in California (income held constant).  Suppose, for
example, that we have an estimated mean WTP of out-of-region households for a visibility change from
Q01 to Q11 at national parks in Califonia (region 1),  denoted WTP1

out.  Suppose the mean income of the
out-of-region subjects in the study was m.  We might assume that, for the same change in visibility at
national parks in the Northwest United States, WTP4

out = WTP1
out among out-of-region individuals with

income m.
 

We could then derive the value of *4, given a value of D as follows:

where Q04 = Q01 and Q14 = Q11, (i.e., where it is the same visibility change in parks in region 4 that was
valued at parks in the region 1). 

This benefits transfer method assumes that (1) all households have the same preference structures
and (2) what is being valued in the Northwest United States (by a California household) is the same as
what is being valued in the California (by all out-of-region households).  While we cannot know the
extent to which the first assumption approximates reality, the second assumption is clearly problematic. 
National parks in one region are likely to differ from national parks in another region in both quality and
quantity (i.e., number of parks).  

One statistic which is likely to reflect both the quality and quantity of national parks in a region is
the average annual visitation rate to the parks in that region.  A reasonable way to gauge the extent to
which out-of-region people would be willing to pay for visibility changes in parks in the Northwest
United States versus in California might be to compare visitation rates in the two regions.47  Suppose, for
example, that twice as many visitor-days are spent in California parks per year as in parks in the
Northwest United States per year.  This could be an indication that the parks in California are in some
way more desirable than those in the Northwest United States and/or that there are more of them -- i.e.,
that the environmental goods being valued in the two regions (“visibility at national parks”) are not the
same.  

A preferable way to estimate *4, then, might be to assume the following relationship:

(income held constant), where n1 = the average annual number of visitor-days to California parks and n4 =
the average annual number of visitor-days to parks in the Northwest United States.  This implies that 
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for the same change in visibility in region 4 parks among out-of-region individuals with income m.  If, for
example, n1 = 2n4, WTP4

out would be half of WTP1
out.  The interpretation would be the following:

California national parks have twice as many visitor-days per year as national parks in the Northwest
United States; therefore they must be twice as desirable/plentiful; therefore, out-of-region people would
be willing to pay twice as much for visibility changes in California parks as in parks in the Northwest
United States; therefore a Californian would be willing to pay only half as much for a visibility change in
national parks in the Northwest United States as an out-of-region individual would be willing to pay for
the same visibility change in national parks in California.  This adjustment, then, is based on the premise
that the environmental goods being valued (by people out-of-region) are not the same in all regions.   

The parameter *4 is estimated as shown above, using this adjusted WTP4
out.  The same procedure

is used to estimate *5 and *6.  We estimate (4, (5, and (6 in an analogous way, using the in-region WTP
estimates from the transfer regions, e.g.,

Estimating Park- and Wilderness Area-Specific Parameters

As noted above, Chestnut and Rowe (1990a) estimated WTP for a region’s national parks
collectively, rather than providing park-specific WTP estimates.  The (’s and *’s are therefore the
parameters that would be in household utility functions if there were only a single park in each region, or
if the many parks in a region were effectively indistinguishable from one another.  Also noted above is
the fact that the Chestnut and Rowe study did not include all Class I areas in the regions it covered,
focusing primarily on national parks rather than wilderness areas.  Most Class I wilderness areas were not
represented on the maps shown to study subjects.  In California, for example, there are 31 Class I areas,
including 6 national parks and 25 wilderness areas.  The Chestnut and Rowe study map of California
included only 10 of these Class I areas, including all six of the national parks.  It is unclear whether
subjects had in mind “all parks and wilderness areas” when they offered their WTPs for visibility
improvements, or whether they had in mind the specific number of (mostly) parks that were shown on the
maps.  The derivation of park- and wilderness area-specific parameters depends on this.

Derivation of Region-specific WTP for National Parks and Wilderness Areas  

If study subjects were lumping all Class I areas together in their minds when giving their WTP
responses, then it would be reasonable to allocate that WTP among the specific parks and wilderness
areas in the region to derive park- and wilderness area-specific (’s and *’s for the region.  If, on the other
hand, study subjects were thinking only of the (mostly) parks shown on the map when they gave their
WTP response, then there are two possible approaches that could be taken.  One approach assumes that
households would be willing to pay some additional amount for the same visibility improvement in
additional Class I areas that were not shown, and that this additional amount can be estimated using the
same benefits transfer approach used to estimate region-specific WTPs in regions not covered by
Chestnut and Rowe (1990a).



48   This might be thought of as two assumptions: (1) that the relative frequencies of visits to the parks in a region  from everyone in
the world is a reasonable representation of the relative frequency of visits from people in the United States – i.e., that the parks that
are most popular (receive the most visitors per year) in general are also the most popular among Americans; and (2) that the relative
frequency with which Americans visit each of their parks is a good index of their relative WTPs for visibility improvements at these
parks.
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However, even if we believe that households would be willing to pay some additional amount for
the same visibility improvement in additional Class I areas that were not shown, it is open to question
whether this additional amount can be estimated using benefits transfer methods.  A third possibility,
then, is to simply omit wilderness areas from the benefits analysis.  For this analysis we calculate
visibility benefits assuming that study subjects lumped all Class I areas together when stating their WTP,
even if these Class I areas were not present on the map.

Derivation of park- and wilderness area-specific WTPs, given region-specific WTPs for national
parks and wilderness areas

The first step in deriving park- and wilderness area-specific parameters is the estimation of park-
and wilderness area-specific WTPs.  To derive park and wilderness area-specific WTPs, we apportion the
region-specific WTP to the specific Class I areas in the region according to each area’s share of the
region’s visitor-days.  For example, if WTP1

in and WTP1
out denote the mean household WTPs in the

Chestnut and Rowe (1990a) study among respondents who were in-region-1 and out-of-region-1,
respectively, n1k denotes the annual average number of visitor-days to the kth Class I area in California,
and n1 denotes the annual average number of visitor-days to all Class I areas in California (that are
included in the benefits analysis), then we assume that

and

Using WTPj
in and WTPj

out, either from the Chestnut and Rowe study (for j = 1, 2, and 3) or derived by the
benefits transfer method (for j = 4, 5, and 6), the same method is used to derive Class I area-specific
WTPs in each of the six regions. 

While this is not a perfect allocation scheme, it is a reasonable scheme, given the limitations of
data.  Visitors to national parks in the United States are not all from the United States, and certainly not
all from the region in which the park is located.  A very large proportion of the visitors to Yosemite
National Park in California, for example, may come from outside the U.S.  The above allocation scheme
implicitly assumes that the relative frequencies of visits to the parks in a region from everyone in the
world is a reasonable index of the relative WTP of an average household in that region (WTPj

in) or out of
that region (but in the U.S.) (WTPj

out) for visibility improvements at these parks.48 

A possible problem with this allocation scheme is that the relative frequency of visits is an
indicator of use value but not necessarily of nonuse value, which may be a substantial component of the
household’s total WTP for a visibility improvement at Class I areas.  If park A is twice as popular (i.e.,
has twice as many visitors per year) as park B, this does not necessarily imply that a household’s WTP for



49   (j* is only approximately equal to the right-hand side because, although it is the optimal value designed to reproduce as closely
as possible all three of the WTPs corresponding to the three visibility changes in the Chestnut and Rowe study, (j* will not exactly
reproduce any of these WTPs. 
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an improvement in visibility at park A is twice its WTP for the same improvement at park B.  Although
an allocation scheme based on relative visitation frequencies has some obvious problems, however, it is
still probably the best way to allocate a collective WTP.

Derivation of park- and wilderness area-specific parameters, given park- and wilderness area-
specific WTPs

Once the Class I area-specific WTPs have been estimated, we could derive the park- and
wilderness area-specific (’s and *’s using the method used to derive region-specific (’s and *’s.  Recall
that that method involved (1) calibrating ( and * to each of the three visibility improvements in the
Chestnut and Rowe study (producing three (’s and three *’s), (2) averaging the three (’s and averaging
the three *’s, and finally, (3) using these average ( and * as starting points for a grid search to find the
optimal ( and the optimal * – i.e., the ( and * that would allow us to reproduce, as closely as possible, the
three in-region and three out-of-region WTPs in the study for the three visibility changes being valued.

Going through this procedure for each national park and each wilderness area separately would
be very time consuming, however.  We therefore used a simpler approach, which produces very close
approximations to the (’s and *’s produced using the above approach.  If:

WTPj
in = the in-region WTP for the change in visibility from Q0 to Q1 in the jth region;

WTPjk
in= the in-region WTP for the same visibility change (from Q0 to Q1) in the kth Class

I area in the jth region (= sjk*WTPj
in, where sjk is the kth area’s share of visitor-

days in the jth region);
m = income;
(j* =  the optimal value of ( for the jth region; and
(jk = the value of (jk calibrated to WTPjk

in and the change from Q0 to Q1;

then49:

and

which implies that:



50   This method uses a single in-region WTP and a single out-of-region WTP per region.  Although the choice of WTP will affect
the resulting adjustment factors (the ajk’s) and therefore the resulting (jk’s and *jk’s, the effect is negligible.  We confirmed this by
using each of the three in-region WTPs in California and comparing the resulting three sets of (jk’s and *jk’s, which were different
from each other by about one one-hundredth of a percent.
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where:

We use the adjustment factor, ajk, to derive (jk from (j*, for the kth Class I area in the jth region.  We use an
analogous procedure to derive *jk from *j* for the kth Class I area in the jth region (where, in this case, we
use WTPj

out and WTPjk
out instead of WTPj

in and WTPjk
in).50 

 

5.1.4 Estimating the Parameter for Visibility in Residential Areas: 2

The estimate of 2 is based on McClelland et al. (1991), in which household WTP for
improvements in residential visibility was elicited from respondents in Chicago and Atlanta.  A notable
difference between the Chestnut and Rowe study and the McClelland study is that, while the former
elicited WTP responses for three different visibility changes, the latter considered only one visibility
change.  The estimation of 2 was therefore a much simpler procedure, involving a straightforward
calibration to the single income and WTP in the study:

5.1.5 Putting it All Together:  the Household Utility and WTP Functions

Given an estimate of 2, derived as shown in Section 5, and estimates of the (’s and *’s, derived as
shown in Section 4, based on an assumed or estimated value of D, the utility and WTP functions for a
household in any region are fully specified.  We can therefore estimate the value to that household of
visibility changes from any baseline level to any alternative level in the household’s residential area
and/or at any or all of the Class I areas in the United States, in a way that is consistent with economic
theory.  In particular, the WTP of a household in the ith region and the nth residential area for any set of
changes in the levels of visibility at in-region Class I areas, out-of-region Class I areas, and the
household’s residential area (given by equation (24)) is:

The national benefits associated with any suite of visibility changes is properly calculated as the
sum of these household WTPs for those changes.  The benefit of any subset of visibility changes (e.g.,
changes in visibility only at Class I areas in California) can be calculated by setting all the other
components of the WTP function to zero (that is, by assuming that all other visibility changes that are not
of interest are zero).  This is effectively the same as assuming that the subset of visibility changes of
interest is the first or the only set of changes being valued by households.  Estimating benefit components



51  Data were not sufficient to develop functions for tomatoes or hay.
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in this way will yield slightly upward biased estimates of benefits, because disposable income, m, is not
being reduced by the WTPs for any prior visibility improvements.  That is, each visibility improvement
(e.g., visibility at Class I areas in the California) is assumed to be the first, and they cannot all be the first. 
The upward bias should be extremely small, however, because all of the WTPs for visibility changes are
likely to be very small relative to income.

5.2 Agricultural Benefits

Changes in ozone concentrations are known to affect agricultural production, affecting
agricultural crops to different degrees depending on their sensitivity.  Estimating the economic benefits
associated with these changes in production requires several steps.  Estimated changes in ozone
concentrations are combined with experimental dose-response functions to estimate crop yield changes. 
The effect of yield changes on agricultural cropping decisions and resulting production and prices are
then evaluated using a model of the agricultural sector, resulting in estimates of changes in farm income
and consumer welfare.  Each of the steps involved in this analysis is described in more detail in the
following sections.  Section 5.2.1 describes the source of exposure-response functions and the selection of
an index of ozone exposure.  Section 5.2.2 describes the derivation of estimated ozone concentrations
under alternative regulatory profiles.  The method for estimating yield changes is described in Section
5.2.3, and the agricultural model used to estimate the impact of changes in yield is discussed in Section
5.2.4.  The results are presented in Chapter 6.

5.2.1 Exposure-Response Functions

Experimental data to evaluate the response of crops to ozone has been collected for a limited
number of crops under the National Crop Loss Assessment Network (NCLAN) program.  The objective
of this program was to employ a consistent experimental methodology to provide comparable results
across crops.  The crops included in the NCLAN experiments are corn, cotton, peanuts, sorghum,
soybeans, winter wheat, potatoes, lettuce, kidney beans, tomatoes, and hay.  For many crops, the NCLAN
program evaluated the effects of ozone on several different cultivars.  Although not necessarily
representative of the full range of variability in crop response, the results for different cultivars do permit
identification of a range of responsiveness.  The most tolerant and responsive functions are used to
represent minimum and maximum impacts, within the limits of available data.

In its analysis of the welfare benefits associated with ozone National Ambient Air Quality
Standards (NAAQS), U.S. EPA elected to represent crop exposure to ozone as a cumulative index (U.S.
EPA, 1996a).  The index selected is the SUM06 index, which sums the ozone concentration for every
hour that exceeds 0.06 ppm, within a 12-hour period from 8:00 A.M. to 8:00 P.M.

Use of cumulative exposure-response functions is relatively recent, and few experiments have
been designed or reported in terms of the SUM06 index.  Because the NCLAN program used a consistent
protocol and developed a database of experimental conditions and results for all of its studies, U.S. EPA’s
Environmental Research Laboratory (ERL) was able to use original data from NCLAN studies to develop
SUM06 exposure response functions for most NCLAN crops51 (Lee and Hogsett, 1996).   In addition, the
agricultural model used in this analysis does not reflect non-commodity crops such as lettuce and kidney
beans (described below).  Exhibit 5-3 presents the exposure-response functions used in this analysis.
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Exhibit 5-3.  Ozone Exposure-Response Functions for Selected Crops (SUM06)

Ozone Index Quantity Crop Function
Median

Experimental
Duration (Days)

Median
Duration
(Months)

SUM06 Max Cotton 1-exp(-(index/78)^1.311) 119 4

SUM06 Max Field Corn 1-exp(-(index/92.4)^2.816) 83 3

SUM06 Max Grain Sorghum 1-exp(-(index/177.8)^2.329) 85 3

SUM06 Max Peanut 1-exp(-(index/99.8)^2.219) 112 4

SUM06 Max Soybean 1-exp(-(index/131.4)^1) 104 3

SUM06 Max Winter Wheat 1-exp(-(index/27.2)^1.0) 58 2

SUM06 Min Cotton 1-exp(-(index/116.8)^1.523) 119 4

SUM06 Min Field Corn 1-exp(-(index/94.2)^4.307) 83 3

SUM06 Min Grain Sorghum 1-exp(-(index/177.8)^2.329) 85 3

SUM06 Min Peanut 1-exp(-(index/99.8)^2.219) 112 4

SUM06 Min Soybean 1-exp(-(index/299.7)^1.547) 104 3

SUM06 Min Winter Wheat 1-exp(-(index/72.1)^2.353) 58 2

Source: Lee and Hogsett (1996)

The form of these functions is a Weibull specification transformed to predict a yield loss relative
to conditions of “clean air”, or a zero SUM06 value.  The resulting equation is in the form of:

Y = 1- e[-(SUM06/B)^C],

where:

Y = predicted relative yield loss (PRYL), expressed as a decimal value (i.e.,
not multiplied by 100 to report as a percent loss), and relative to a zero
SUM06 (or clean air) condition

SUM06 = cumulative SUM06 ozone statistic at a specified level of spatial
representation, in ppm

B, C = statistically estimated parameters, unitless.

Application of Exposure Response Functions to a Non-Zero Baseline 

There is an issue associated with applying the yield loss functions to analysis of alternative
regulatory profiles.  The functions provide a predicted yield loss relative to “clean” air, while regulatory
analysis needs to compare regulatory options to a baseline, non-zero ozone condition.  Therefore, the
yield change resulting from the regulatory scenario is evaluated as the yield loss relative to clean air under
the regulatory scenario being evaluated compared to the yield loss under baseline conditions.

To address this issue, the change in yield under clean air conditions can be divided by the
baseline yield.  If yield under clean conditions is 100 percent of possible yield, then baseline yield in this
context is 1 minus baseline yield loss.  Thus the change in yields relative to the baseline can be given as:



52  Peanut emergence and harvest dates were taken from the U.S. EPA PRZM-2 Model data.
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(PRYLbaseline - PRYLcontrol)/(1-PRYLbaseline).

Ozone Index Computation

In order to accurately reflect changes in yields using exposure response functions, they must be
applied in a way that is consistent with the experimental conditions used to generate the functions. 
Specifically, the ozone index, in this case the SUM06 index, needs to be consistent with ozone exposure
used in the experimental derivation of the function.  For example, if the function is a 12-hour exposure
function, then the index used must be a 12-hour index.  Another component of the experimental exposure
is the duration of the experiment.  A precise reflection of experimental conditions would require that the
ozone index should be calculated for the same number of days as used in the experiment for each crop. 
However, in the benefits analysis for the 1997 ozone NAAQS RIA, it was determined that the median
duration of all NCLAN experiments for a given crop provided a statistically sound reflection of duration
for the purposes of estimating SUM06 indices for estimating agricultural benefits (Mathtech1997).  The
median durations for each crop are reported in Exhibit 5-3 in both days and months.  The ozone NAAQS
analysis constructed the ozone index based on the nearest number of months; this analysis constructed the
index based on the number of days.  

Finally, because growing seasons vary throughout the U.S., the exposure needs to reflect the
months in which a crop would be grown in a given location.  To calculate the SUM06 index for the
appropriate growing season, state-level data on planting and harvesting dates was used in this analysis52

(U.S. Department of Agriculture, 1984; U.S. EPA, 1993).  To calculate the cumulative SUM06 index, the
experimental duration for each crop was anchored on that crop’s harvest date in each state in order to
most closely approximate the relevant period of exposure for yield analysis.  The harvest date was
assumed to be the first day in the month of harvest, so that the SUM06 index includes the months up to
but not including the harvest month.  

The baseline and control ozone data for this analysis were developed from monthly SUM06
values, requiring several steps in the calculation of a duration-based index.  First, starting at the month
before the harvest month, each full month of SUM06 data was summed.  The ozone value for the first
month of the duration period was calculated as the fraction of the remaining days in the duration period to
the number of days in the month.  For example, soybeans have a 104-day duration, translating to 3 full
months plus a fraction of the first month in the growing season.  If soybeans are harvested in October in a
given state, three full months of data starting in September are summed (91 days), along with 13 days of
June, or 0.43 of the June SUM06 data, to obtain the 104-day SUM06 index.  This approach implicitly
assumes an equal average daily SUM06 within each bi-monthly period.   The index was calculated on a
county level assuming all counties reflect the state-level growing seasons.

While the ozone data in this analysis were modeled from May through September, the growing
season for some crops includes April, October, and November.  To estimate SUM06 values for these
unmodeled months, base-year ozone values were used.

5.2.2 Estimation of Yield Changes

In this analysis, use of a single exposure response function to estimate changes in yields implies
that all producers are using a single cultivar of a given crop.  This, combined with the limited number of



53   To the extent that the Rule increases diesel prices, shipping prices for some agricultural products may increase, and may cause
some farmers to change their production decisions.  The magnitude of such an impact is likely to be small.  Time and resources did
not permit modeling this possible impact on their decision-making.
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cultivars evaluated in the NCLAN program, introduces an unquantifiable uncertainty into the estimation
of yield changes.  The most sensitive cultivar was used to represent the upper bound of the range that
could be estimated, and the least sensitive cultivar was used to represent the lower bound of that range.  

Using the exposure response functions and the SUM06 ozone indices, county-level yield changes
were estimated between each regulatory profile and the baseline.  County level yield changes were then
aggregated to the state level using 1997 data on county level production as weights (U.S. Department of
Agriculture, 1988a): the resulting state-level yield changes were used for quality control purposes.  The
model used to estimate changes in the agricultural sector resulting from yield changes (described 
below) requires a national level yield change; this was calculated in the same manner as was the change in
state-level yields.

5.2.3 AGSIM© Model

AGSIM© is an econometric-simulation model that is based on a large set of statistically estimated
demand and supply equations for agricultural commodities produced in the United States.  This model has
been peer-reviewed and utilized in many pesticide and other major agricultural policy evaluations (Taylor
et al., 1993).

The model is capable of analyzing the effects of changes in policies that affect crop yields or
production costs.  This is achieved by estimating how farmers will adjust crop acreage between
commodities when relative profitability changes as a result of policy-induced crop yield and/or
production cost changes.53  Acreage and yield changes from various scenarios will affect total production
of crops, which simultaneously affects both commodity prices and consumption. Commodity price
changes, in turn, affect profitability and cropping patterns in subsequent years.  Federal farm program and
conservation reserve effects are also incorporated into the model.  The model has been adapted to reflect
the projections to 2010 from the last future year for which baseline forecasts are available: 2007. 
Although ozone impacts will be experienced far in the future, it was not possible to forecast the AGSIM©
model far beyond USDA baseline forecasts that extend to 2007.  Therefore, the 2030 ozone conditions
were modeled using the 2010 version of the model.

Model Specification

AGSIM© is based on a set of dynamic supply and demand equations for major crops. 
Commodities are generally linked on both the supply side and demand side of markets.  Crops included in
the model are corn, grain sorghum, barley, oats, wheat, soybeans, cotton, hay, peanuts and rice.  The
simulation component of the model finds the set of prices for all commodities endogenous to the model
that simultaneously clear all markets in each year over the simulation period.  Dynamics are incorporated
into the econometric specification and thus incorporated into the simulation model. All equations in the
model were econometrically estimated, except a few policy equations that were based on legislated
formula.

Supply Components
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The crop supply component of AGSIM© is based on a set of supply equations for the major field
crops produced in the United States.  Effects of farm programs, specifically the 1985 Food Security Act
(FSA), the 1990 Food Agricultural Conservation and Trade Act (FACTA), and the 1996 Federal
Agricultural Improvement and Reform Act (FAIR), are reflected in the econometric specification of the
supply component of the model, and thus are included in the simulation model.  

Ex ante simulation of environmental policy will likely involve an assumption of continuation of
the 1996 FAIR Act indefinitely.  However, since most of the historical observations on which supply
equations were econometrically estimated occurred under different programs, it is important to consider
how historical equations reflect the 1996 FAIR Act.  The basic philosophy that guided inclusion of farm
program features into the supply component of the model follow.  First, beginning with the 1985 FSA,
continuing with the 1990 FACTA, and now with the 1996 FAIR Act, North American Free Trade
Agreement (NAFTA) and the General Agreement on Tariffs and Trade (GATT), farm and international
trade policy has moved U.S. agriculture to a market orientation.  Although the 1985 FSA and the 1990
FACTA had price support and acreage diversion features, they embodied a strong market orientation.  For
all major program crops (in AGSIM©), the acreage devoted to the crop exceeded the acreage under
government programs.  Thus, at the margin, market prices (and not support prices) influenced crop
acreage.  Another way of looking at this is that farm programs have influenced crops at the intra-margin,
while the market has influenced crops at the margin.  Thus, after accounting for acreage diverted under
farm programs, expected prices determine acreage.  For these reasons, AGSIM© should be valid for
simulating agricultural markets under the market conditions established under the 1996 FAIR Act.

Sets of equations that comprise the supply component of the current version of the model include:
(1) acreage planted to each crop, (2) acreage harvested of each crop, (3) acreage in annual set-aside or
acreage reduction programs (ARP) by crop, (4) acreage in cultivated summer fallow, (5) crop yields per
harvested acre, (6) rate of participation in Federal farm programs by crop, and (7) annual set-aside rates
by crop under past farm programs, as related to stock levels (historically legislated) and thus related to
market price.  Identities in the model are: (a) production is the product of acreage harvested and yield per
harvested acre, and (b) the quantity supplied equals the quantity demanded for each commodity (market
clearing).  Specification of each of these sets of equations follows.

Acreage Planted Equations.  Acreage planted is the key behavioral relationship in the supply
component of the model.  Acreage planted of a particular crop depends on expected per-acre net returns
for that crop, expected per-acre net returns for competing crops, and farm program variables. In algebraic
(and Fortran) form, the acreage planted equation is: 

(1) acresp(ic,it,irun) = bc(ic) + bap(ic)*acresp(ic,it-1,irun) + bcrp(ic)*acrp(ic,it,irun) +
bdiv(ic)*acrediv + brm(ic)*rerntm(ic,it,irun) +
ber(ic)*rerentnp(it,irun) + byr(ic)*time(it) +
bd83(ic)*dumb83(it)

where: 
acresp(ic,it,irun) = acreage planted to the icth crop in the itth year and in simulation

“irun”, 
acrp(ic,it,irun) = acreage of crop “ic” that was placed in the conservation reserve

program, 
acrediv = acreage diverted under annual set-aside programs, 
rerentm(ic,it,irun) = real expected per acre returns over variable costs for the icth crop,



54  Weights used in computing a composite expected return variable were the acreage harvested of each crop the previous year
divided by total acreage harvested the previous year.
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rerentnp(it,irun)  = real expected per acre returns over variables costs computed as a
weighted average54 of rerentm(ic,it,irun) over all endogenous
crops,

time(it) = a time-trend variable, and
dumb83(it) = a binary dummy variable to account for the PIK program in crop

year 1983.

The remaining variables in equation (1) represent estimated coefficients.  A single run of AGSIM
involves two simulations, one for the baseline (irun=0) and one for the policy scenario (irun=1).  These
two simulations are then compared to estimate the economic impacts of the policy scenario.

Expected returns over variable costs, rerentm(ic,it,irun), is defined as:

(1a) rerntm(ic,it,irun)  =  rp(ic,it-1,irun)*ey(ic,it,irun) - rcost(ic,it,irun)

where:
rp(ic,it-1,irun) = real price the previous crop year (actual or simulated, depending on the

time period), 
ey(ic,it,irun) = expected crop yield, and 
rcost(ic,it,irun) = real variable production cost.

Expected yield is based on trend-line regressions:

(1b) ey(ic,it,irun) = [cint(ic) + by(ic)*time(it)]

where:
cint(ic) and by(ic) are estimated coefficients.

In the policy run, expected yield is adjusted for exogenously specified percentage yield changes (“dyld”):

(1c) ey(ic,it,irun) = [cint(ic) + by(ic)*time(it)]*(1.0 + dyld(ic,it)/100.)

Changes in real variable costs of production can also be exogenously specified for the policy
simulation run.  Thus, yield and cost changes directly impact acreage planted through equation (1), and
indirectly impact acreage planted because of the resulting impact on prices in equation (1a) and thus in
equation (1).

Given signs and magnitudes of estimated coefficients in equation (1), an increase in expected
returns of the icth crop will increase acreage planted of that crop, while an increase in expected returns of
other endogenous crops will decrease acreage of the  icth crop.   The estimated coefficient on lagged
acreage planted in equation (1) is positive and less than one in value for all crops, which means that
acreage planted is dynamically stable. The estimated coefficient on the set-aside acreage is negative and
less than one in absolute value for all crops except oats, which reflects acreage slippage in the ARP
program.  Oats were typically planted to set-aside acreage, thus the estimated coefficient on set-aside
acreage is positive in the oats equation, as expected.  Further comments will be made on the acreage
diverted effects on planted acreage after participation rate and acreage diverted equations, which are
endogenous, are presented below.
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Acreage Harvested Equations.  Acreage harvested depends primarily on acreage planted:

(2) acresh(ic,it,irun) = bch(ic) + baph(ic)*acresp(ic,it,irun) + byrh(ic)*time(it) +
bdvh(ic)*acrediv

where:
acresh(ic,it,irun) = the acreage harvested of the icth crop in the itth year and in

simulation “irun”,

and other variables are as defined previously.  

The estimated coefficient baph(ic) is positive and less than one, indicating that not all planted
acreage is harvested, as expected.  The coefficient  bdvh(ic) on the acreage diverted variable is non-zero
for oats only, in which case it is negative.  This adjusts oat acreage harvested for the complexity of oats
being planted (but not harvested) on ARP acreage.  A time-trend variable for corn and grain sorghum, but
not other crops shows how harvested acreage as a percentage of planted acreage has been increasing
slightly over time.

Participation Rate in Farm Programs.  Participation rates in the annual set-aside programs
under the 1985 FSA and the 1990 FACTA were endogenized in the model with the set of equations:

(3) part(ic,it,irun) = bcp(ic) + brmp(ic)*rerntm(ic,it,irun) + brpp(ic)*rerntp(ic,it,irun) +
byr(ic)*time(ic) + bpart(ic)*part(ic,it-1,irun) + bedpp(ic)*redp(ic,it,irun)
+ bd83p(ic)*dumb83(it)

where:
part(ic,it,irun) = the participation rate in the farm program for the  icth crop in the itth year

and in simulation “irun”, 
rerntp(ic,it,irun)= real expected returns over variable costs based on the support (target)

price for that crop, 
redp(ic,it,irun) = real effective acreage diversion payment rate,

 and other variables are as defined previously.  

Estimated coefficients brpp(ic) are non-negative, indicating that an increase in expected returns
based on support price will increase participation, while estimated coefficients brmp(ic) are non-positive,
indicating that an increase in expected returns based on expected market price will decrease participation. 
Lagged participation rate in equation (3) shows strong dynamics with respect to farm program
participation.   

Acreage Diverted under Farm Programs.  Acreage diverted under annual set-aside (or ARP)
programs is modeled as:

(4) adiv(ic,it,irun) = bcd(ic) + bd83d(ic)*dumb83(it) + bedpd(ic)*redp(ic,it,irun) +
byrd(ic)*time(it) + bpsa(ic)*sa(ic,it,irun)*part(ic,it,irun)

where:
adiv(ic,it,irun) = acreage diverted under annual diversion programs for the  icth crop in the

itth year and in simulation “irun”, 
sa(ic,it,irun) = the set-aside rate specified by the Secretary of Agriculture under 1985

FSA and 1990 FACTA, 
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and other variables are as defined previously.
     

Acreage slippage (with respect to historical set-aside) in farm programs is implicit in the model
specification, and results from the complex simultaneity of farm program variables in sets of equations
(1), (3), and (4).

Acreage in Cultivated Summer Fallow.  Acreage in cultivated summer fallow is modeled by the
equation:

(5)      afl(it,irun) = bcfl + bafl*afl(it-1,irun) + berfl*rerentnp(it,irun) + byrfl*time(it) +
bd83fl*dumb83(it)

where:
afl(it,irun) = acreage fallowed in year it in simulation run “irun”.  

Although the acreage in cultivated summer fallow is highly inelastic, this equation shows that an
increase in expected returns based on expected market price results in a small decrease in acreage
fallowed.

Demand Components

The crop demand component of AGSIM© is based on a set of demand equations for each crop for
utilization categories of (a) imports, (b) exports,(c) livestock feed, (d) food, fiber, ethanol production and
other domestic uses, (e) ending stocks, and (f) residual use.  Each demand component depends on current
market price for that commodity and, where relevant, prices of other commodities.  The model
specification of each utilization category follows.

Imports.  Imports of agricultural commodities are modeled by the set of equations:

(6)     qd(ic,it,irun,1)  = bim(1,ic) + bim(2,ic)*rp(ic,it,irun)*xrate(ic,it-1,irun)                              
+ bim(3,ic)*qd(ic,it-1,irun,1) + bim(4,ic)*time(it) +
bim(5,ic)*uspop(it,irun)

where: 
qd(ic,it,irun,1) = the quantity of crop ic imported in year it in simulation run

“irun”,
rp(ic,it,irun) = real market price, 
xrate(ic,it-1,irun) = the real trade-weighted exchange rate, 
uspop(it,irun) = the United States population, 

and bim(j,ic) are estimated coefficients.  Lagged imports in equation (6) reflects dynamic adjustments.

Exports.  Exports of agricultural commodities are modeled by the set of equations:

(7) qd(ic,it,irun,2) = bex(1,ic) + bex(2,ic)*rp(ic,it,irun)*xrate(ic,it-1,irun) + bex(3,ic)*
qd(ic,it-1,irun,2) + bex(4,ic)*time(it) + bex(5,ic)*wpop(it,irun)

where:
qd(ic,it,irun,2) = the quantity of crop ic exported in year it in simulation run “irun”, and 
wpop(it,irun) = world population.
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Feed, Fiber and Crushing Use.  Domestic utilization of crops for feed, fiber or crushing
(depending on the crop) is modeled by the set of equations:

(8) qd(ic,it,irun,3) = bfd(1,ic) + 3jcbfdcross(ic,jc)*rp(jc,it,irun) + bfd(2,ic)*qd(ic,it-1,irun,3) +
bfd(3,ic)*time(it)

where:
qd(ic,it,irun,3) = utilization for feed, fiber or crushing.  

Note that cross-price effects are incorporated into this set of equations through the set of estimated
coefficients bfdcross(ic,jc).  Symmetry of cross-price effects, consistent with microeconomic theory, was
imposed on estimation so that bfdcross(ic,jc) = bfdcross(jc,ic) for ic … jc.  Own-price effects are all
negative, as expected.

Domestic Food Use.  The set of equations to represent domestic food use is:

(9) qd(ic,it,irun,4) = bfo(1,ic) + bfo(2,ic)*rp(ic,it,irun)  + bfo(3,ic)*qd(ic,it-1,irun,4) +
bfo(4,ic)*time(it) + bfo(5,ic)*uspop(it,irun) + bfo(6,ic)*rdincome(it,irun)

 
where:

rdincome(it,irun)  =  real per-capita disposable income in the United States, 

and other variables are as defined previously.  In the case of peanuts, the real market price is replaced by
the fixed quota price that applies to all domestically consumed peanuts.  This quota price for peanuts
applies to the 1985 FSA, the 1990 FACTA, and continues with the 1996 FAIR Act.

Ending Stocks.  Ending stocks are viewed as another component of demand.  Although
commodities are often held to maintain pipeline inventories, commodities are also held for speculative
purposes.  Thus, stock levels respond strongly to prices, so the stock relationships were specified and
estimated as

(10) qd(ic,it,irun,5) = bst(1,ic) + bst(2,ic)*rp(ic,it,irun) + bst(3,ic)*qd(ic,it-1,irun,5) +
bst(4,ic)*time(it)

where qd(ic,it,irun,5) is ending stocks in year t.  

Residual Use.  For some crops (rice, peanuts, and cottonseed), supply and utilization data show a
residual category, which is modeled as,

(11) qd(ic,it,irun,6) =  brs(1,ic) + brs(2,ic)*rp(ic,it,irun) + brs(3,ic)*time(it)

where:
qd(ic,it,irun,6) = residual use.  

Although quantities in this residual use category are never used, the level of the residual does
respond negatively to the real price, and is thus viewed as another utilization (demand) category.

Market Clearing Identities
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In supply and demand specification outlined above, supply generally depends on past prices,
while demand depends on current prices.  In simulating these econometrically estimated equations into
the future, simulated prices are solved by simultaneously solving the market clearing identities

(12) qs(ic,it,irun) +qd(ic,it-1,irun,5)    = qd(ic,it,irun,1) + qd(ic,it,irun,2) + qd(ic,it,irun,3) +
qd(ic,it,irun,4)  + qd(ic,it,irun,5) + qd(ic,it,irun,6)

where:
qs(ic,it,irun)  =  the quantity produced of crop ic in year it in simulation “irun”. 

Production is defined to be qs(ic,it,irun) = acresh(ic,it,irun)*ey(ic,it,irun).  The left hand side of
the equal sign in (12) gives total supply (production plus beginning stocks), while the right-hand side of
(12) gives total utilization, including ending stocks.

In the simulation model this set of simultaneous equations are numerically solved to get the
market clearing prices in a given year.  This process is continued, considering the dynamics of the model,
indefinitely into the future.

Historical Observation Period

Many econometric relationships in the model were estimated with data for the 1975-1995 time
period.  However, where structural change was apparent, such as with stock holding behavior and
international trade, some of the early years were dropped from statistical analysis so that the simulation
model would better reflect the future.

Alternative Specifications Considered

Many different specifications of how farm programs influence crop acreage have been considered
in the evolution of AGSIM©, including: (a) acreage depends on support price, (b) acreage depends on the
maximum of expected market price and support price, (c) acreage depends on a weighted average of
support and expected market prices, with weights based on program and non-program acreage of the crop,
and (d) acreage depends on expected market price.  Models for expected market price have considered
complex distributed lags that go back several years in time, to a simple model that expected market price
is actual price the previous year.  Acreage equations have also been specified to depend on expected
returns of: (1) all competing individual crops with no parameter restrictions, (2) all competing individual
crops with full symmetry of cross-effects imposed on estimation, (3) major competing individual crops,
and (4) a weighted average of all expected returns for all other crops. Many different ways of
incorporating participation rates and acreage diverted into the model have also been considered.  Several
alternative functional forms (linear, log-linear, nonlinear share equations, asymptotic) have also been
considered.  Theoretical specifications considered have ranged from ad hoc models to very tightly
specified and detailed theoretical economic models based on complex assumptions.  The present model
draws from economic theory (e.g. symmetry of cross-price effects in demand and homogeneity of degree
zero of all supply and demand equations with respect to prices), but does not specify the model so tightly
with untested assumptions and functional forms that empirical data has almost no role in the resulting
estimates. Alternative estimation techniques, ranging from simultaneous equations techniques, to
Zellner’s seemingly unrelated regressions, to ordinary least squares regression have been used.  The
current version of AGSIM© reflects a degree of subjective judgement of what best reflects supply and
demand of agricultural commodities based on microeconomic theory, traditional statistical criteria, and
substantive direct contact with farmers and ranchers in most regions of the United States.
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Baseline

The current version of AGSIM© is designed to estimate changes in the agricultural sector
resulting from pesticide or other policy.  Changes in economic variables are computed by comparing a
policy simulation of the model with a baseline simulation of the model.  For ex post (retrospective)
evaluations, the baseline reflects actual farm programs, prices, acreages, etc.  However, for ex ante
evaluations, AGSIM© is calibrated to an external baseline. The calibration is done by comparing an
internally generated baseline to the external baseline and computing adjusted intercepts for all of the
relevant demand and supply relationships in AGSIM©. 

For the 1999 version of AGSIM© the externally specified year 2010 baseline is forecasted from
the 2007 baseline reported by USDA (1988b).  A few endogenous variables in AGSIM© were not
included in the USDA baseline.  In those cases, the 1997 FAPRI baseline was used (FAPRI, 1997).

It should be noted that the baseline is not especially critical to estimates of changes in the
agricultural sector, except for the case of price support policy, which is not relevant here.  That is,
sensitivity analyses with previous versions of AGSIM© have shown that estimates of changes in
variables are not very sensitive to baseline absolute values of variables.  Use of the USDA baseline to the
extent possible assures consistency with other governmental mandated agricultural policy analyses.

Regional Effects Sub-Model

AGSIM© subroutines are also available to combine AGSIM© output with production cost
information to estimate net farm income impacts for the policy scenario at the regional level (or farm,
representative farm, area or state level).  Required information for this type of evaluation includes for
each farm or area: (a) yield and cost changes (which often differ from the national yield and cost changes
for the policy scenario), (b) baseline production costs, and(c) acreages of each crop.  This information is
combined with price impacts estimated with AGSIM©, and regional supply elasticities from a prior
version of AGSIM© (or from other sources) to estimate net farm income changes for the farms or areas
considered. 

The conceptual foundation for regional evaluation in this version of AGSIM© begins with a net
farm income formula,

(13)   Π ir ic ir ic ir
ic

A R= ∑ , ,

where:
(ir = net farm income in region ir, 
Aic,ir = acreage harvested of the icth crop in that region, and 
Ric,ir = per-acre net return in that region. 

Based on equation (13), it can be shown that the theoretically appropriate formula for computing
net farm income changes for different regional situations is:
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where:
ª represents a discrete change, 
ªZ represents the discrete policy change, 
ic and jc are crop indices, 

and other variables are as previously defined.  

Equation (14) can be expressed in acreage elasticity (with respect to per-acre income) form,
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where: 
,ic,ij,ir = elasticity of acreage of the icth crop in the irth region with respect to per-

acre income of the jcth crop in that region.  

The term ªRic,ij/ªZ in equations (14) and (15) can be further expanded to give
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Formula (15) along with (16) can be empirically implemented to estimate the change in regional 
(or farm, representative farm, area or state level) farm income with the following information for each
region: (a) crop budgets, (b) the change in yield and cost associated with the policy in question, price
impacts estimated with AGSIM©, and externally specified (from an older version of AGSIM©, from
subjective estimates, or from the literature) elasticities. 

The first term on the right-hand side of (14) and (15) represents the change in net income
resulting from increased or decreased acreage, while the last term on the right-hand side of (14) and (15)
represents the change in net farm income on existing acreage of crops in the region.  Since acreage
response is generally inelastic, the last term on the right-hand side of (14) and (15) dominates the change
in net farm income in a region; thus, elasticities generally will not have a major impact on regional net
farm income changes estimated with the above approach.
 

AGSIM© Output

The major outputs from AGSIM© are changes in crop acreage, production, price, income, foreign
consumer benefits, domestic consumer benefits, and farm program costs.  The traditional method of
economic welfare analysis (which is based on the concept of economic surplus) of policy changes is used
to compute the sum of changes in producer surplus (net farm income) plus changes to all consumers
(changes in consumers surplus) plus any changes in farm program payments (zero under 1996 FAIR).  To
avoid the possibility of inappropriately comparing a baseline with a policy scenario that was actually
based on another baseline, a single run of AGSIM© produces both the baseline tables and the policy
scenario tables, then computes economic surplus and price changes based on these two runs of the model.
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Output from each run of the model includes two sets of tables for each crop; one set of tables for
supply variables and another set of tables for supply and utilization variables.  Each table includes
historical statistics as well as simulations into the future.  These tables are constructed for the baseline and
the policy scenario.

5.3 Consumer Cleaning Cost Savings

Particulate matter air pollution has been shown to result in dirtier clothes, which in turn results in
higher annual cleaning costs for consumers.  One benefit of reduced particulate matter, then, is the
consequent reduction in cleaning costs for consumers.  Several studies have provided estimates of the cost
to households of PM soiling.  The study that is cited by ESEERCO (1994) as one of the most
sophisticated and is relied upon by EPA in its 1988 Regulatory Impact Analysis for SO2 is Manuel et al.
(1982).  Using a household production function approach and household expenditure data from the 1972-
73 Bureau of Labor Statistics Consumer Expenditure Survey for over twenty cities in the United States,
Manuel et al. estimated the annual cost of cleaning per :g/m3 PM per household as $1.55 ($0.59 per
person times 2.63 persons per household).  This estimate is low compared with others (e.g., estimates
provided by Cummings et al. (1985) and Watson and Jaksch (1982) are about eight times and five times
greater, respectively).  The ESEERCO report notes, however, that the Manuel estimate is probably
downward biased because it does not include the time cost of do-it-yourselfers. Estimating that these costs
may comprise at least half the cost of PM-related cleaning costs, they double the Manuel estimate to
obtain a point estimate of $3.10 (reported by ESEERCO in 1992 dollars as $2.70).

The Manuel et al. (1982) study measured particulate matter as TSP rather than PM10 or PM2.5.  If
a one :g/m3 increase in TSP causes $1.55 worth of cleaning expenses per household, the same unit dollar
value can be used for PM10 (or PM2.5) only if particle size doesn’t matter -- i.e., only if particles of all
sizes are equally soiling.  Suppose, for example, that PM10 is 75% of TSP and that all particles are equally
soiling.  Then 75% of the damage caused by a one :g/m3 increase in TSP is due to PM10.  This is
(0.75)($1.55) = $1.16.  However, this corresponds to a 0.75 :g/m3 increase in PM10.  A one :g/m3

increase in PM10 would therefore yield a dollar soiling damage of $1.16/0.75 = $1.55.  

Suppose, however, that only PM10 matters.  Then the $1.55 underestimates the impact of a one
:g/m3 increase in PM10, because it corresponds to a less than one :g/m3 increase in PM10 (e.g., a 0.75
:g/m3 increase in PM10).  In this case, the correct unit value per unit of PM10 would be ($1.55)/0.75 =
$2.07.  If only PM10 matters, then either (1) the dollar value can be adjusted by dividing it by the
percentage of TSP that is PM10 and PM10 can be used in the soiling damage function, or (2) the dollar
value can be left unadjusted and TSP, rather than PM10, can be used in the soiling damage function.

Finally, it is possible that, while both PM10 and PM2.5 are components of TSP that cause consumer
cleaning costs, the remaining portion of TSP has a greater soiling capability than either the PM10 or PM2.5
component.  In this case, using either PM10 or PM2.5 air quality data with a household soiling function
based on TSP would yield overestimates of the PM10- or PM2.5-related consumer cleaning costs avoided
by reductions in concentration of these pollutants.

There is, however, insufficient information on the relative soiling capabilities of the different
components of TSP.  This analysis assumes that all components of TSP have an equivalent soiling
capacity.
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6 Results

This chapter provides estimates of the magnitude and value of changes in selected health and
welfare endpoints associated with Nonroad Diesel-related changes in ambient ozone and PM
concentrations in 2020 and 2030. The total dollar benefits associated with a given endpoint depend on
how much the endpoint will change (e.g., how many premature deaths will be avoided) and how much
each unit of change is worth (e.g., how much a premature death avoided is worth).

To place estimated incidence changes into context with predicted baseline incidence, Exhibit 6-1
displays the reductions in PM- and ozone-related adverse health effects as a percent of total baseline
incidence. Due to the nature of the endpoints, baseline incidence can be calculated only for certain ozone-
and PM-related health effects; there is no baseline incidence associated with welfare effects or endpoints
that are direct economic valuations.  In addition to the  percent change between post-control incidence
reductions and the predicted incidence baseline, we present the mean incidence change for each health
effect.  Note that the percent of total baseline incidences are calculated by dividing the number of health
effects avoided due to the Nonroad Diesel rule by the total number of baseline incidences.

Exhibit 6-2 presents the base and alternative incidence estimates associated with the Nonroad
Diesel rule in 2020 and 2030.  A 2.5th percentile, mean, and 97.5th percentile estimate for incidence is
presented for each endpoint.  It should be noted that premature mortality associated with ozone is not
separately included in this analysis.  It is assumed that the C-R function for premature mortality captures
both PM mortality benefits and any mortality benefits associated with other air pollutants. 

Exhibits 6-3 and 6-4 present, respectively, the 2020 and 2030 base and alternative valuation
estimates associated with the incidence change estimates presented in Exhibit 6-2.  Exhibits 6-3 and 6-4
also present endpoints that were valued directly (ozone-related worker productivity) and the value of
changes in visibility and agricultural benefits.  Where possible, a 2.5th percentile, mean, and 97.5th

percentile estimate for incidence is presented for each endpoint, representing uncertainty associated with
both the estimate of incidence and the valuation. The valuation results also reflect the use of two different
discount rates; a 3% rate which is recommended by EPA’s Guidelines for Preparing Economic Analyses
(2000e), and 7% which is recommended by OMB Circular A-94 (1992).  Also note that the valuation for
long-term mortality assumes the 5 year distributed lag structure described earlier.

Exhibit 6-5 presents the incidence of health effects occurring in three age groups: children (0-17),
adults (18-64), and elderly adults (65 and older).  Certain endpoints occur only in a subset of age groups,
so not all endpoints are reported for all age groups.  The exhibit presents two sets of age group estimates. 
The first is based on the specific age ranges examined in the epidemiological studies, for example, the
Dockery et al. (1996) acute bronchitis study focused on a sample population aged 8 to 12.  These are the
estimates that we used to derive total incidences in Exhibit 6-2.  In many cases, however, the study
populations were defined as a matter of convenience or due to data availability, rather than due to any
biological factor that would restrict the effect to the specific age group.  In order to gain a more complete
understanding of the potential magnitude of the health impact in the entire population, we calculate a
separate estimate including the health impact on all population within an age group.  Exhibit 6-5 also
presents these results.

Exhibit 6-6 presents the mean incidence results associated with respiratory symptoms and attacks
occurring in the asthmatic population, based on the studies defined in Chapter 4, Table 4-23.  As with the
age group specific estimates, Exhibit 6-6 provides two sets of calculations, one based on applying the C-R
function only to the specific population subgroup included in a study’s sample population, and another
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based on applying the C-R function to all populations within a broader population.  Note that the asthma
symptom estimates provided in Exhibit 6-6 are not additive to total benefits.  They are provided to show
the specific impacts on an especially susceptible subpopulation.  Also note that the estimates are not
additive even within the exhibit.  We have grouped the estimates based on the type of symptoms
measured, but there is the potential for considerable overlap.  However, these estimates provide an
illustration of the consistency of the effects across studies and populations of asthmatics.
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Exhibit 6-1.  Reductions in PM- and Ozone-related Adverse Health Effects as Percent of Baseline
Incidence

Endpoint
Avoided Incidence

(cases/year)

2020 % Baseline 2030 % Baseline

PM-related Endpoints

Premature mortality 
          Base estimate:  Long-term exposure (adults, 30 and over)
          Alternative estimate:  Short-term exposure (all ages)

6,211
3,706

0.18%
0.11%

10,989
6,571

0.26%
0.15%

Chronic bronchitis (adults, 27 and over) 4,282 0.47% 6,548 0.67%

Non-fatal myocardial infarctions (adults, 18 and older) 10,567 0.52% 17,768 0.91%

Hospital admissions - Chronic Lung (adults, 20-64) 257 0.02% 340 0.02%

Hospital admissions - Asthma (0-64) 426 0.03% 613 0.05%

Hospital admissions - Pneumonia (adults, 65+) 2,136 1.10% 4,050 1.42%

Hospital admissions - Chronic Lung (adults, 65+) 263 0.19% 499 0.25%

Total hospital admissions – Respiratory 3,082 0.05% 5,502 0.09%

Hospital admissions - Cardiovascular (adults, 20-64) 921 0.01% 1,236 0.01%

Hospital admissions - Cardiovascular (adults, 65+) 2,086 0.21% 3,954 0.27%

Total hospital admissions – Cardiovascular 3,007 0.02% 5,191 0.04%

Emergency Room Visits for Asthma (18 and younger) 4,324 0.55% 6,510 0.76%

Acute bronchitis (children, 8-12) 10,172 1.34% 15,604 1.90%

Lower respiratory symptoms (children, 7-14) 116,055 0.75% 178,206 1.06%

Upper respiratory symptoms (asthmatic children, 9-11) 91,900 0.15% 123,976 0.18%

Work loss days (adults, 18-64) 777,566 0.18% 1,112,905 0.26%

Minor restricted activity days (adults, 18-64) 4,577,570 0.30% 6,507,255 0.42%

Ozone-related Endpoints

Hospital Admissions – Respiratory (adults, 65+) 372 0.08% 1,131 0.17%

Hospital Admissions - Respiratory (children, under 2) 432 0.08% 863 0.16%

Emergency Room Visits for Asthma (all ages) 93 0.005% 199 0.01%

Minor restricted activity days (adults, 18-64) -2,416 -0.0002% 95,858 0.01%

School absence days (children, 6-11) 64,595 0.10% 137,654 0.20%
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Exhibit 6-2.  Reductions in Incidence of PM- and Ozone-related Adverse Health Effects Associated
with the Preliminary Nonroad Landbased Diesel Engine Standards

Endpoint a

Avoided Incidence b  (cases/year)

2020 2030

2.5% mean 97.5% 2.5% mean 97.5%

PM-related Endpoints

Premature mortality 

    Base Estimate:  Long-term exposure (30+) 3,043 6,211 9,376 5,386 10,989 16,585

    Alternative Estimate, Short-term exposure:  
Non-COPD (65+)
Non-COPD Related (0-64)
COPD-Related (65+)
COPD-Related (0-64)

–
–
–
–

2,551
724
369

62

–
–
–
–

–
–
–
–

4798
978
712

83

–
–
–
–

Chronic bronchitis (27+) 119 4,282 8,416 182 6,548 12,848

Non-fatal myocardial infarctions (18+) 2,610 10,567 18,431 4,400 17,768 30,913

Hospital admissions - Chronic Lung (20-64) 28 257 485 37 340 642

Hospital admissions - Asthma (0-64) 78 426 775 112 613 1,118

Hospital admissions - Pneumonia (65+) 343 2,136 3,934 650 4,050 7,463

Hospital admissions - Chronic Lung (65+) -569 263 1,083 -1,080 499 2,057

Total hospital admissions – Respiratory n/a 3,082 n/a n/a 5,502 n/a

Hospital admissions - Cardiovascular (20-64) -82 921 1,924 -110 1,236 2,584

Hospital admissions - Cardiovascular (65+) -916 2,086 5,074 -1,736 3,954 9,619

Total hospital admissions – Cardiovascular n/a 3,007 n/a n/a 5,191 n/a

Emergency Room Visits for Asthma (0-18) 2,196 4,324 6,463 3,303 6,510 9,740

Acute bronchitis (8-12) -2,373 10,172 22,508 -3,653 15,604 34,403

Lower respiratory symptoms (7-14) 43,173 116,055 188,361 66,413 178,206 288,722

Upper respiratory symptoms (asthmatics 9-11) 16,855 91,900 166,896 25,990 123,976 257,267

Work loss days (18-64) 658,458 777,566 896,616 942,534 1,112,905 1,283,152

Minor restricted activity days (18-64) 3,731,795 4,577,570 5,422,544 5,306,090 6,507,255 7,706,762

Ozone-related Endpoints

Hospital Admissions – Respiratory (65+) 76 372 749 230 1,131 2,241

Hospital Admissions - Respiratory (under 2) 182 432 689 363 863 1,382

Emergency Room Visits for Asthma (all ages) 26 93 225 56 199 347

Minor restricted activity days (18-64) -5,573 -2,416 -547 40,668 95,858 148,194

School absence days (6-11) -7,666 64,595 138,066 -16,622 137,654 271,781
a Ozone-related mortality is not included in the estimate of premature mortality.  Respiratory hospital admissions for PM includes
admissions for  COPD, pneumonia, and asthma, and ozone-related respiratory admissions includes all respiratory causes and
subcategories for COPD and pneumonia. Cardiovascular hospital admissions for PM includes total cardiovascular and
subcategories for ischemic heart disease, dysrhythmias, and heart failure.
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Exhibit 6-3.  Results of Human Health and Welfare Benefits Valuation for the Modeled Preliminary
Nonroad Landbased Diesel Engine Standards: 2020

Endpoint a
2020 Monetary Benefits b

(millions 2000$)

2.5% mean 97.5%

PM-related Endpoints

Premature mortality 

Base estimate:  Long-term exposure, (adults, 30 and over)
3% discount rate
7% discount rate

Alternative estimate:  Short-term exposure, 3% discount rate (all ages)
Non-COPD Related (65 and over)
Non-COPD Related (0-64)
COPD Related (65 and over)
COPD Related (0-64)

              Sum
Alternative estimate:  Short-term exposure, 7% discount rate (all ages)

Non-COPD Related (65 and over)
Non-COPD Related (0-64)
COPD Related (65 and over)
COPD Related (0-64)

              Sum

$2,439
$2,291

–
–
–
–
–

–
–
–
–
–

$37,202
$34,943

$5,067
$571

$78
$5

$5,722

$5510
$848

$92
$8

$6,459

$81,622
$76,666

–
–
–
–
–

–
–
–
–
–

Chronic bronchitis (adults, 26 and over) 
Base estimate: Willingness-to-pay
Alternative estimate: Cost-of-illness

3% discount rate
7% discount rate

$27

$12
$7

$1,458

$416
$267

$6,705

$817
$525

Non-fatal myocardial infarctions
3% discount rate
7% discount rate

$222
$215

$899
$872

$1,569
$1,521

Hospital admissions - Chronic Lung Disease (adults, 20-64) $0.3 $3 $6

Hospital admissions - Asthma (0-64) $1 $3 $6

Hospital admissions - Pneumonia (adults, 65 and over) $6 $38 $70

Hospital admissions - Chronic Lung Disease (adults, 65 and over) -$8 $4 $15

Total hospital admissions – Respiratory – $48 –

Hospital admissions - Cardiovascular (adults, 20-64) -$2 $21 $44

Hospital admissions - Cardiovascular (adults, 65 and over -$19 $44 $107

Total hospital admissions – Cardiovascular – $65 –

Emergency Room Visits for Asthma $1 $1 $2

Acute bronchitis (children, 8-12) -$1 $4 $10

Lower respiratory symptoms (children, 7-14) $1 $2 $4

Upper respiratory symptoms (asthmatic children, 9-11) $0 $2 $6

Work loss days (adults, 18-65) $90 $107 $123

Minor restricted activity days (adults, age 18-65) $122 $233 $352

Ozone-related Endpoints

Hospital Admissions – Respiratory Causes (adults, 65 and older) $1 $6 $13

Hospital Admissions - Respiratory Causes (children, under 2 years) $1 $3 $5



Exhibit 6-3.  Results of Human Health and Welfare Benefits Valuation for the Modeled Preliminary
Nonroad Landbased Diesel Engine Standards: 2020  (Continued)

Endpoint a
2020 Monetary Benefits b

(millions 2000$)

2.5% mean 97.5%
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Emergency Room Visits for Asthma (all ages) $0.00 $0.03 $0.06

Minor restricted activity days (adults, age 18-64) -$0.30 -$0.12 -$0.03

School absence days (children, age 6-11) -$1 $5 $10

Worker productivity (outdoor workers, age 18-65) – $14 –

Welfare Endpoints

Recreational visibility (86 Class I Areas) – $826 –

Agricultural crop damage (6 crops)c $41 $88 $134

Monetized Total
Base estimate

3% discount rate
7% discount rate

Alternative estimate
3% discount rate
7% discount rate

–
–

–
–

$40,963
$38,677

$8,441
$9,002

–
–

–
–

a  Monetary benefits are rounded to two significant digits.
b Ozone-related mortality is not included in the estimate of premature mortality.  Respiratory hospital admissions for PM includes
admissions for  COPD, pneumonia, and asthma, and ozone-related respiratory admissions includes all respiratory causes and
subcategories for COPD and pneumonia. Cardiovascular hospital admissions for PM includes total cardiovascular and
subcategories for ischemic heart disease, dysrhythmias, and heart failure.
c The credible range for agricultural crop damage does not represent the 2.5th and 97.5th percentiles.  Instead, the range represents
the minimum and maximum of the range of benefits associated with avoided agricultural crop damage.
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Exhibit 6-4.  Results of Human Health and Welfare Benefits Valuation for the Modeled Preliminary
Nonroad Landbased Diesel Engine Standards: 2030

Endpoint a
2030 Monetary Benefits b

(millions 2000$)

2.5% mean 97.5%

PM-related Endpoints

Premature mortality 

Base estimate:  Long-term exposure, (adults, 30 and over)
3% discount rate
7% discount rate

Alternative estimate:  Short-term exposure, 3% discount rate (all ages)
Non-COPD Related (65 and over)
Non-COPD Related (0-64)
COPD Related (65 and over)
COPD Related (0-64)

              Sum
Alternative estimate:  Short-term exposure, 7% discount rate (all ages)

Non-COPD Related (65 and over)
Non-COPD Related (0-64)
COPD Related (65 and over)
COPD Related (0-64)

              Sum

$4,314
$4,052

–
–
–
–
–

–
–
–
–
–

$65,817
$61,820

$9,531
$771
$151

$7
$10,460

$10,364
$1,146

$178
$11

$11,699

$144,398
$135,630

–
–
–
–
–

–
–
–
–
–

Chronic bronchitis (adults, 26 and over) 
Base estimate: Willingness-to-pay
Alternative estimate: Cost-of-illness

3% discount rate
7% discount rate

$42

$17
$11

$2,229

$601
$385

$10,245

$1,180
$755

Non-fatal myocardial infarctions
3% discount rate
7% discount rate

$355
$346

$1,435
$1,396

$2,496
$2,429

Hospital admissions - Chronic Lung Disease (adults, 20-64) $0 $4 $8

Hospital admissions - Asthma (0-64) $1 $5 $9

Hospital admissions - Pneumonia (adults, 65 and over) $12 $72 $133

Hospital admissions - Chronic Lung Disease (adults, 65 and over) -$15 $7 $28

Total hospital admissions – Respiratory $88

Hospital admissions - Cardiovascular (adults, 20-64) -$2 $28 $59

Hospital admissions - Cardiovascular (adults, 65 and over -$37 $84 $204

Total hospital admissions – Cardiovascular – $112 –

Emergency Room Visits for Asthma $1 $2 $3

Acute bronchitis (children, 8-12) -$1 $6 $16

Lower respiratory symptoms (children, 7-14) $1 $3 $6

Upper respiratory symptoms (asthmatic children, 9-11) $1 $3 $9

Work loss days (adults, 18-65) $129 $153 $176

Minor restricted activity days (adults, age 18-65) $173 $332 $500

Ozone-related Endpoints

Hospital Admissions – Respiratory Causes (adults, 65 and older) $4 $19 $38

Hospital Admissions - Respiratory Causes (children, under 2 years) $3 $7 $11



Exhibit 6-4.  Results of Human Health and Welfare Benefits Valuation for the Modeled Preliminary
Nonroad Landbased Diesel Engine Standards: 2030  (Continued)

Endpoint a
2030 Monetary Benefits b

(millions 2000$)

2.5% mean 97.5%
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Emergency Room Visits for Asthma (all ages) $0.02 $0.06 $0.1

Minor restricted activity days (adults, age 18-64) $2 $5 $9

School absence days (children, age 6-11) -$1 $10 $20

Worker productivity (outdoor workers, age 18-64) – $23 –

Welfare Endpoints

Recreational visibility (86 Class I Areas) – $1,250 –

Agricultural crop damage (6 crops)c $68 $137 $205

Monetized Total
Base estimate

3% discount rate
7% discount rate

Alternative estimate
3% discount rate
7% discount rate

–
–

–
–

$71,631
$67,595

$14,646
$15,630

–
–

–
–

a  Monetary benefits are rounded to two significant digits.
b Ozone-related mortality is not included in the estimate of premature mortality.  Respiratory hospital admissions for PM includes
admissions for  COPD, pneumonia, and asthma, and ozone-related respiratory admissions includes all respiratory causes and
subcategories for COPD and pneumonia. Cardiovascular hospital admissions for PM includes total cardiovascular and
subcategories for ischemic heart disease, dysrhythmias, and heart failure.
c The credible range for agricultural crop damage does not represent the 2.5th and 97.5th percentiles.  Instead, the range represents
the minimum and maximum of the range of benefits associated with avoided agricultural crop damage.
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Exhibit 6-5.  Reductions in Incidence of Health Endpoints by Age Group

Pollutant Endpoint/Age Group a
Age of
Study

Population

Avoided Incidence (cases/year) 

Study Population Only Total Age Group
Population 

2020 2030 2020 2030

Children, 0-17

PM Premature mortality - 
     Alternative estimate:  Short-term exposure 0-17 20 30 20 30

Hospital Admissions - Asthma 0-17 192 290 192 290

Emergency Room Visits for Asthma 0-17 4,324 6,510 4,324 6,510

Acute bronchitis 8-12 10,172 15,604 30,898 46,739

Lower respiratory symptoms 7-14 116,055 178,206 220,500 333,589

Upper respiratory symptoms in asthmatics 9-11 91,900 123,976 433,317 657,319

O3 Hospital Admissions - Respiratory Causes <2 432 863 432 863

School absence days (two studies pooled) 9-10, 6-11 64,595 137,654 161,671 321,654

Adults, 18-64

PM Premature mortality - 
Base estimate: Long-term exposure
Alternative estimate:  Short-term exposure

30-64
18-64

1,360
766

1,841
1,031

1,453
766

1,971
1,031

Chronic bronchitis 27-64 3,256 4,618 4,943 5,567

Non-fatal myocardial infarctions 18-64 3,942 5,269 3,942 5,269

Hospital admissions - Chronic Lung Disease 20-64 257 340 257 340

Hospital admissions - Asthma 18-64 234 323 234 323

Hospital admissions - Cardiovascular Causes 20-64 921 1,236 921 1,236

Work loss days 18-64 777,566 1,112,905 777,566 1,112,905

Minor restricted activity days 18-64 4,577,570 6,507,255 4,577,570 6,507,255

O3 Minor restricted activity days 18-64 -2,416 95,858 -2,416 95,858

Adults, 65 and older

PM Premature mortality - 
Base estimate: Long-term exposure
Alternative estimate:  Short-term exposure

65+
65+

4,852
2,920

9,148
5,510

4,852
2,920

9,148
5,510

Chronic Bronchitis 65+ 1,026 1,930 1,026 1,930

Non-fatal Myocardial Infarctions 65+ 6,625 12,499 6,625 12,499

Hospital Admissions - Pneumonia 65+ 2,136 4,050 2,136 4,050

Hospital Admissions - Chronic Lung Disease 65+ 263 499 263 499

Hospital Admissions - Cardiovascular Causes 65+ 2,086 3,954 2,086 3,954

O3 Hospital Admissions – Respiratory Causes 65+ 372 1,131 372 1,131
a Ozone-related mortality is not included in the estimate of premature mortality. 
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Exhibit 6-6.  Reductions in Incidence of Respiratory Symptoms in the Asthmatic Population

PM-Related Endpoint Description of Study
Population

Avoided Incidence (cases/year)

Study Population Only Total Age Group Population 

2020 2030 2020 2030

Asthma Attack Indicators a

Shortness of Breath African American
asthmatics, 8-13

9,970 14,836 30,261 45,250

Cough African American
asthmatics, 8-13

20,779 30,922 63,069 94,312

Wheeze African American
asthmatics, 8-13

16,300 24,258 49,473 73,986

Asthma Exacerbation – one or
more symptoms Asthmatics, 5-13 401,458 614,782 626,871 951,249

Cough Asthmatics, 6-13 183,586 281,306 323,021 489,599

Other symptoms/illness endpoints

Upper Respiratory Symptoms Asthmatics 9-11 91,900 141,683 433,317 657,319

Moderate or Worse Asthma Asthmatics, all ages 85,532 121,408 85,532 121,408

Acute Bronchitis Asthmatics, 9-15 3,039 4,707 7,201 10,914

Chronic Phlegm Asthmatics, 9-15 7,453 11,510 17,656 26,686

Asthma Attacks Asthmatics, all ages 129,502 194,158 129,502 194,158
a Note that these symptoms of asthma are not necessarily independent.  Combinations of these symptoms may occur in the same
individuals, so that the sum of the avoided incidences is not necessarily equal to the sum of the affected populations.  Also, some
asthma studies cover the same or similar endpoints in overlapping populations.  For example, the Vedal et al (1998) and Ostro et al
(2000) studies both examined cough.  However, the Ostro et al (2000) estimate examined a more restricted population than Vedal
et al (1998), so estimates should be combined with caution.
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Appendix A: Individual Study Results for Base and Alternative Estimates,
Pooling Weights, and Sensitivity Results

This Appendix provides additional details underlying the results presented in the Base and Alternative
Estimates.  This includes the results from the individual studies included in the pooled estimates, as well
as the weights for these studies.  In addition, in those cases where we calculated results for individual age
groups and then summed these age groups to provide our estimate, we have provided the individual age-
specific results.  In addition, this appendix provides the results of the sensitivity analyses.
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Exhibit A-1.  Supplemental Benefit Estimates for the 2030 Control Scenario

Endpoint Year <18 18-24 25-34/30-
34

35-44 45-54 55-64 65-74 75-84 85+ Total

Krewski et al. (2000) - Mortality, Long-
Term, All Cause, 30+

2020 n/a n/a 51 164 323 822 1,425 1,606 1,821 6,211

2030 n/a n/a 73 258 447 1,063 2,527 3,470 3,151 10,989

Schwartz et al. (1996) - Mortality, Short-
Term, Non-COPD Related, All Ages

2020 19 5 31 70 166 433 723 824 1,004 3,274

2030 29 7 42 110 229 561 1,282 1,778 1,738 5,776

Schwartz et al. (1996) - Mortality, Short-
Term, COPD Related, All Ages

2020 1 0 1 2 9 49 131 143 95 431

2030 1 1 2 4 12 63 234 312 166 795
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Exhibit A-2.  Sensitivity Calculation: Alternative Threshold and Alternative Lag Structures for
Long-term Mortality

Incidence
(Cases/Year)

Benefits
(millions 2000$) a

Analysis Description 2020 2030 2020 2030

Alternative Threshold

Mortality, Long-Term, 30+'
Krewski et al. (2000)
Annual Mean PM2.5

No Threshold 6,211 10,989 $37,202 $65,817

5 ug/m3 6,194 10,962 $37,097 $65,657

10 ug/m3 5,035 9,402 $30,154 $56,315

15 ug/m3 1,345 3,197 $8,055 $19,147

20 ug/m3 498 1,032 $2,985 $6,183

25 ug/m3 150 428 $900 $2,566

Alternative Lag

Mortality, Long-Term, 30+
Krewski et al. (2000)
Annual Mean PM2.5

No lag 6,211 10,989 $39,132 $69,231

Base (5 Year) Distributed Lag:  25%, 25%,
17%, 17%, 16%

6,211 10,989 $37,202 $65,817

8 Year Lag: Incidence Occurs 8th Year 6,211 10,989 $31,818 $56,291

15 Year Lag: Incidence Occurs 15th Year 6,211 10,989 $25,871 $45,770
a When calculating benefits for the alternative threshold, we assume a 5-year distributed lag adjustment calculated, and we use a
three percent discount rate.  For the alternative lag benefits, we also use a three percent discount rate.
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Exhibit A-3.  Sensitivity Calculation: Alternative C-R Functions for Mortality

Reference Age PM Metric
Incidence

(Cases/Year)
Benefits 

(millions 2000$)

2020 2030 2020 2030

Pope et al. (2002) 30+ Annual Mean
PM2.5

5,397 9,549 $32,322 $57,192

Krewski et al. (2000) - Pope et al. (1995) Reanalysis 30+ Annual Median
PM2.5

6,518 11,560 $39,041 $69,235

Krewski et al. (2000) - Pope et al. (1995) Reanalysis
- Random Effects, Independent Cities

30+ Annual Median
PM2.5

12,653 22,428 $75,784 $134,327

Krewski et al. (2000) - Pope et al. (1995) Reanalysis
- Random Effects, Regional Adjustment

30+ Annual Median
PM2.5

7,382 13,091 $44,216 $78,407

Pope et al. (1995) 30+ Annual Median
PM2.5

7,809 13,846 $46,769 $82,931

Krewski et al. (2000) - Dockery et al. (1993)
Reanalysis

25+ Annual Mean
PM2.5

17,940 31,647 $107,447 $189,542

Dockery et al. (1993) 25+ Annual Mean
PM2.5

16,799 29,637 $100,614 $177,505

Pope et al. (2002) 30+ Annual Mean
PM2.5

3,978 7,163 $23,824 $42,899

Pope et al. (2002) 30+ Annual Mean
PM2.5

742 1,279 $4,444 $7,658

Woodruff et al. (1997) Infant Annual Mean
PM10

35 52 $211 $312
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Exhibit A-4.  Sensitivity Calculations: Miscellaneous Ozone- and PM-related

Incidence 
(Cases/Year)

Benefits 
(millions 2000$)

Sensitivity Reference Pollutant 2020 2030 2020 2030

Chronic Bronchitis Reversals Based on Abbey et al.
(1995c)

Annual Mean
PM2.5

3,725 5,697 $560 $856

Alternative Hospital Admissions

COPD Samet et al. (2000) Daily Mean
PM10

791 2,217 $11 $30

Pneumonia Samet et al. (2000) Daily Mean
PM10

976 1,851 $17 $33

All Cardiovascular Samet et al. (2000) Daily Mean
PM10

2,879 5,398 $61 $114

PM-Based Alternative Minor Illness

Any-of-19 Respiratory
Symptoms

Krupnick et al. (1990) Daily Mean
PM10

13,360,641 19,015,146 $317 $451

Alternative Welfare Benefits

Household Soiling Damage ESEERCO (1994) Annual Mean
PM10

– – $170 $258

Ozone-Based Alternative Analyses

Chronic Asthma McDonnell et al.
(1999)

Annual Mean
8-hr ozone

1,167 2,412 $36 $74

Any-of-19 Respiratory
Symptoms

Krupnick et al. (1990) Daily 1-hr
Max ozone

1,488,798 2,739,641 $35 $65

Ozone Mortality 4 U.S. Studies Daily Mean
and 1-hr Max
ozone

94 281 $561 $1,685
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Exhibit A-5.  Pooling Weights Used in Base Analysis and Sensitivity Calculations

2020 Pooling 2030 Pooling

Endpoint Study Mean Std. Dev.  Weights Mean Std. Dev. Weights

PM-Related COPD 65+

Lippmann et al. (2000) 361 762 0.15 687 1,447 0.15

Moolgavkar (2000) 255 322 0.85 485 612 0.85

PM-Related All Cardiovascular 65+ 

Lippmann et al. (2000) 3,155 1,157 0.50 5,980 2,193 0.50

Moolgavkar (2000) 1,019 1,162 0.50 1,932 2,204 0.50

Ozone-Related All Respiratory 65+    –  Incidence

Schwartz (1995), New Haven 339 171 0.11 1,051 530 0.10

Schwartz (1995), Tacoma 924 331 0.03 2,858 1,022 0.03

Schwartz (1994), Detroit 534 113 0.24 1,604 339 0.25

Moolgavkar et al. (1997),
Minneapolis

336 94 0.36 1,020 284 0.35

Schwartz (1994), Minneapolis 235 108 0.27 713 327 0.27

Ozone-Related All Respiratory 65+    –  Valuation

Schwartz (1995), New Haven 6.23 3.14 0.08 19.28 9.73 0.08

Schwartz (1995), Tacoma 16.97 6.08 0.02 52.45 18.75 0.02

Schwartz (1994), Detroit 8.57 1.78 0.27 25.79 5.33 0.27

Moolgavkar et al. (1997),
Minneapolis

5.49 1.15 0.40 16.68 4.40 0.40

Schwartz (1994), Minneapolis 4.18 1.92 0.23 12.69 5.82 0.23

Ozone-Related Asthma ER Visits All Ages

Weisel et al. (1995) 115 18 0.48 248 39 0.49

Cody et al. (1992) 53 18 0.49 114 39 0.49

Stieb et al. (1996) 362 175 0.03 817 396 0.02

Ozone-Related School Loss Days

Gilliland et al. (2001) 46,614 27,809 0.58 101,807 60,909 0.53

Chen et al. (2000) 89,552 32,649 0.42 176,282 64,270 0.47

Ozone-Related Mortality

Moolgavkar et al. (1995) 77 27 0.65 235 83 0.63

Samet et al. (1997) 118 39 0.31 360 120 0.30

Ito and Thurston (1996) 444 175 0.02 993 392 0.03

Kinney et al. (1995) 0 149 0.02 0 333 0.04
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Exhibit A-6.  Age-Specific Incidence Estimates: PM-related Hospital Admissions

Endpoint Year
Age Group

<18 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ Total

Lippmann et al. (2000) - Pneumonia, 65+ 2020 – – – – – – 738 750 649 2,136

2030 – – – – – – 1,311 1,619 1,120 4,050

Lippmann et al. (2000) - COPD, 65+ 2020 – – – – – – 182 123 44 349

2030 – – – – – – 323 263 77 663

Moolgavkar (2000b) - COPD, 65+ 2020 – – – – – – 134 90 33 256

2030 – – – – – – 237 193 57 487

Moolgavkar (2000b) - COPD, 20-64 2020 – 1 6 16 49 184 – – – 257

2030 – 2 8 26 67 237 – – – 340

Sheppard et al. (1999) - Asthma, <65 2020 192 17 52 40 57 67 – – – 426

2030 290 25 71 63 78 86 – – – 613

Lippmann et al. (2000) - Ischemic, 65+ 2020 – – – – – – 303 170 53 526

2030 – – – – – – 536 368 91 995

Lippmann et al. (2000) - Dysrhythmia, 65+ 2020 – – – – – – 259 220 124 603

2030 – – – – – – 456 473 215 1,144

Lippmann et al. (2000) - Heart Failure, 65+ 2020 – – – – – – 682 740 596 2,019

2030 – – – – – – 1,207 1,591 1,027 3,825

Moolgavkar (2000a) - Cardio., 65+ 2020 – – – – – – 462 366 208 1,036

2030 – – – – – – 818 789 358 1,965

Moolgavkar (2000a) - Cardio., 20-64 2020 – 7 34 87 229 564 – – – 921

2030 – 10 47 137 314 727 – – – 1,236

Peters et al. (2001) - Heart Attack (Non-Fatal), 18+ 2020 – 3 45 330 1,077 2,487 3,076 2,269 1,280 10,567

2030 – 5 62 521 1,479 3,202 5,435 4,875 2,189 17,768
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Exhibit A-7.  Age-Specific Incidence Estimates: Ozone-related Hospital Admissions for Persons 65+

Endpoint Year
Age Group

65-74 75-84 85+ Total

Schwartz (1995) - All Resp., New Haven 2020 150 133 53 336

2030 415 465 161 1,040

Schwartz (1995) - All Resp., Tacoma 2020 412 365 147 924

2030 1,138 1,273 445 2,855

Schwartz (1994) - COPD, Detroit 2020 126 86 11 223

2030 331 288 39 658

Moolgavkar et al. (1997) - COPD, Minneapolis 2020 62 48 7 117

2030 172 161 23 356

Schwartz (1994) - Pneumonia, Detroit 2020 120 121 69 310

2030 326 417 198 941

Moolgavkar et al. (1997) - Pneumonia, Minneapolis 2020 85 85 49 219

2030 230 294 140 664

Schwartz (1994) - Pneumonia, 65+, Minneapolis 2020 91 92 52 235

2030 247 317 150 715

Exhibit A-8.  Age-Specific Incidence Estimates: PM-related Chronic Bronchitis and Work Loss
Days

Endpoint Year
Age Group

18-24 25-44/27-
44

45-64 65+ Total

Abbey et al. (1995c) - Chronic Bronchitis, 27+ 2020 – 1,631 1,625 1,026 4,282

2030 – 2,438 2,180 1,930 6,548

Ostro (1987) - Work Loss Days, 18-64 2020 83,413 420,206 273,946 – 777,566

2030 123,122 621,900 367,883 – 1,112,905
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Exhibit A-9.  Age-Specific Incidence Estimates: PM-related Asthma Attacks and Moderate-or-Worse Asthma

Endpoint Year
Age Group

<18 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ Total

Whittemore and Korn (1980) - Asthma Attacks,
All Ages

2020 39,945 9,314 20,132 17,239 14,658 15,474 7,475 3,677 1,588 129,502

2030 51,683 12,254 24,287 26,118 21,173 14,096 6,117 4,278 1,537 161,543

Ostro et al. (1991) - Moderate-or-Worse Asthma 2020 26,211 6,107 13,127 11,364 9,653 10,367 5,106 2,512 1,084 85,532

2030 37,657 8,520 17,266 17,038 12,790 12,594 8,584 5,175 1,785 121,408

Exhibit A-10.  Age-Specific Incidence Estimates: Ozone-related Mortality

Endpoint Year
Age Group

<18 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ Total

Ito and Thurston, (1996) 2020 2 0 1 4 16 57 114 126 124 444

2030 3 1 2 9 28 89 249 343 268 993

Kinney et al., (1995) 2020 0 0 0 0 0 0 0 0 0 0

2030 0 0 0 0 0 0 0 0 0 0

Moolgavkar et al., (1995) 2020 0 0 -1 -1 1 10 25 25 17 77

2030 0 0 -1 0 4 21 68 90 53 235

Samet et al., (1997) 2020 0 0 -2 -1 1 15 39 39 26 118

2030 1 0 -1 -1 7 32 104 138 82 360



55  Geolytics (2001; 2002a) provided the 1990 and 2000 census data.
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Appendix B: Population Forecasts

This appendix summarizes the steps used to estimate 2020 and 2030 population.  In addition, we
include a table with age-specific population estimates by state for the years 2000, 2020, and 2030.

B .1 Population Grid-Cells

CAPMS calculates health impacts at the level of U.S. counties as well as for a variety of grid
structures used in air quality modeling (e.g.,, REMSAD, and CAMx).  In this description, we use the term
“population grid-cells” to refer to counties or the cells within an air quality modeling grid.  The
foundation for calculating the population level in the population grid-cells is the 2000 Census block
data.55  A separate application developed by Abt Associates, called “PopGrid,” combines the Census
block data with any user-specified set of population grid-cells, so long as they are defined by a GIS shape
file.

If the center of a Census block falls within a population grid-cell, PopGrid assigns the block
population to this particular population grid-cell.  Note that the grid-cells in air quality model, such as
REMSAD and CAMx, may cross multiple county boundaries.  To account for this, PopGrid keeps track
of the total number of people by county within a particular populatin grid-cell.  Keeping track of the total
number of people in a county is useful in the estimation of adverse health effects, where the calculation of
premature mortality depends on county-level mortality rates.  It is also useful in the presentation of health
benefits, when users may want estimates at the state- and county-level, as opposed to estimates by, say,
the area covered by an air quality model.

Within any given population grid-cell, CAPMS has 256 demographic variables, including 180 unique
racial-gender-age groups: 19 age groups by gender by 5 racial groups (19*2*5=180).  In addition there is
an Hispanic ethnicity variable, which includes a number of different racial groups, as well as a number of
variables that aggregate the population by race and gender.  Exhibit B-1 presents the 256 population
variables available in CAPMS.  As discussed below, these variables are available for use in developing
age estimates in whatever grouping desired by the user.

Exhibit B-1.  Demographic Groups and Variables Available in CAPMS

Racial/Ethnic Group Gender Age # Variables

White, African American, Asian,
American Indian, Other, Hispanic

Female,
Male

0-1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44,
45-49, 50-54, 55-59, 60-64, 65-69, 70-74,  75-79, 80-84, 85+

228

All – 0-1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44,
45-49, 50-54, 55-59, 60-64, 65-69, 70-74,  75-79, 80-84, 85+

19

All Female,
Male

– 2

White, African American, Asian,
American Indian, Other, Hispanic

– – 6

All – – 1
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B .2 Census Data 2000

In addition to forecasting post-2000 population levels based on the 2000 Census, CAPMS also allows
the user to estimate the impacts for 1991-1999 by interpolating between the results of the 1990 and 2000
Census.  As a result, we have developed a consistent set of demographic variables, based on the 1990
Census, which provides somewhat less detail than the 2000 Census.

The 2000 Census allows respondents to choose more than one racial category, unlike the 1990 Census,
which allowed only one choice.  As a result there are seven racial categories in the 2000 Census versus
five in the 1990 Census (Exhibit B-2).  To make the 2000 Census data consistent with the 1990 Census,
we reduced the seven racial groups to the five used in the 1990 Census.

The initial data set at the block level includes 368 demographic groups: seven racial groups and
Hispanic ethnicity, by 23 pre-defined age groups by gender (Exhibit B-2).  Because the 2000 Census
includes somewhat different age groupings than that for the final set generated for the 1990 Census.  Age
variables 15-17 and 18-19 are combined, 20, 21, and 22-24 are combined, 60-61 and 62-24 are combined,
and 65-66 and 67-69 are combined at the block level.  One variable, under 5 years, must be split into two
variables (Under 1 and 1-4 years).  Assuming that the population is uniformly distributed within age
groups, we apply a factor of 1/5 to create the 0-1 age group and 4/5 to create the 1-4 age group.

Exhibit B-2.  Race, Ethnicity and Age Variables in 2000 Census Block Data

Race / Ethnicity Gender Age

Initial Variables White Alone, Black Alone, Native American
Alone, Asian Alone, Pacific Islander /
Hawaiian Alone, Other Alone, Two or More
Alone, Hispanic (Non-Exclusive)

Male, Female 0-5, 5-10, 10-14, 15-17, 18-19, 20, 21,
22-24, 25-29, 30-34, 35-39, 40-44, 45-
49, 50-54, 55-59, 60-61, 62-64, 65-66,
67-69, 70-74, 75-79, 80-84 85+

Final Variables
(identical to
1990 variables)

White, African American, Asian & Pacific
Islander, American Indian, Other, Hispanic

Female, Male 0-1, 1-4, 5-9, 10-14, 15-19, 20-24,
25-29, 30-34, 35-39, 40-44, 45-49,
50-54, 55-59, 60-64, 65-69, 70-74, 
75-79, 80-84, 85+

Source: Geolytics (2002a).  Note: Some population values were errors in the original Census data (e.g., values of a billion or
more). Following personal communication with Geolytics, these were set to zero. 

B .1.1 Matching Racial Categories in the 1990 and 2000 Censuses

Unlike the 1990 Census, respondents in the 2000 Census respondents could check more than one box
for race, so the reported results included a grouping of individuals that had checked two or more racial
categories.  In addition, the 2000 Census separately reported the categories “Pacific Islander / Hawaiian
Along” and “Asian Alone.”  To make the racial groupings comparable with the 1990 Census, we first
combined Pacific Islander / Hawaiian Alone with the Asian Alone category to form the category Asian
and Pacific Islander category.  Then we divided the category Two-or-More between the remaining five
racial categories.

Exhibit B-3 presents the estimated percentage of the national population by five racial groups: (1)
American Indian or Alaska Native, (2) Asian or Pacific Islander, (3) Black, (4) White, and (5) Other, as
well as for four combinations:  (1) American Indian or Alaska Native (AIAN)/White, (2) Asian or Pacific
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Islander (API)/White, (3) Black/White, and (4) Other combinations.  Slightly over 98 percent of
individuals chose a single racial category, with 1.45 percent choosing three AIAN/White, API/White, and
Black/White, and 0.30 choosing other combinations (e.g., Black/Asian).  Exhibit B-3 also presents the
estimated primary racial affiliation of individuals in these subcategories if they were to choose a single
racial affiliation.

Exhibit B-3.  Distribution of Racial Groups

Racial Category
% of Total

U.S.
Population a 

% of Population in Sub-Groups by Primary Racial Affiliation b

AIAN API Black White Other All

American Indian or Alaska Native
(AIAN)

0.85 100 – – – – 100

Asian or Pacific Islander (API) 3.35 – 100 – – – 100

Black 12.07 – – 100 – – 100

White 79.72 – – – 100 – 100

Other race 2.25 – – – – 100 100

AIAN/White 0.89 12.4 – – 80.9 6.7 100

API/White 0.30 – 34.6 – 46.9 18.4 100

Black/White 0.26 – – 48.2 25.2 26.6 100

Other combinations c 0.30 – – – – 100.0 100

Two-or-More Sub-Total d 1.75 6.3 5.9 7.2 52.9 27.7 100
a All percentages weighted to be nationally representative.  Percentages taken from Parker and Makuc (2001, Table 2), who cited
the National Health Interview Survey 1993-1995, APPENDIX: Percent Distribution (Standard Error) of Primary Racial
Identification for Selected Detailed Race Groups.
b Primary racial affiliation based on survey results from Parker and Makuc (2001, Appendix).
c Parker and Makuc (2001) did not provide an estimate of the primary racial affiliation for “Other combinations, so we assume that
it belongs to the “Other” category.  Note that they did provide the primary racial affiliation for a fourth group “Black/AIAN:”
85.4% Black, 7.0% AIAN, and 7.6% Other.  However, we do not have an estimate of the relative abundance of Black/AIAN in the
general population, so we have dropped it from further consideration.
d As described in the text below, we calculated the percentages in this row from the percentages in the previous four rows for
AIAN/White, API/White, Black/White, and Other combinations.

To estimate how to assign a single racial group for individuals that chose two or more racial groups,
we used the results of Exhibit B-3 for the three main categories for which we an estimate of the primary
racial affiliation: AIAN/White, API/White, and Black/White.  To account for the 0.30 percent of the
population in other combinations, we  For each Census block, we assume that .89 / (.89+.30+.26+.30) =
50.8% of respondents in the Two or More category will fall into the AIAN / White category, and of these,
80.9% would primarily identify themselves as White if they were to choose a single racial category,
12.4% would primarily identify themselves as American Indian or Alaska Native, and 6.7% would
primarily identify themselves as Other.  Thus 0.508 * .809 = 41% of Two or More we will call White,
10% we identify as Native American, and 5% as Other.  

We did not attempt to predict what respondents in the ‘Other Combinations’ category would have
selected if they were to choose a single racial category, so we assume they are part of the “Other”
category.  To estimate the number of individuals in each of the five races, we performed the following
calculations:
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This then reduces to:
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B .1.2 Estimating Population Levels in Alternative Age Groups

In calculating the population in age groups that may include a portion of one of the pre-specified
demographic groups in Exhibit B-1, CAPMS assumes the population is uniformly distributed in the age
group.  For example, to calculate the number of children ages 3 through 12, CAPMS calculates:

B .2 Estimating Population Levels in Non-Census Years

To forecast population levels beyond 2000, CAPMS scales the 2000 Census-based estimate with the
ratio of the county-level forecast for the future year of interest over the 2000 county-level population
level.  Woods & Poole (2001) provides the county-level population forecasts used to calculate the scaling
ratios.

In the simplest case, where one is forecasting a single population variable, say, children ages 4 to 9 in
the year 2010, CAMPS calculates:

where the gth population grid-cell is wholly located within a given county.

In the case, where the gth grid-cell includes “n” counties in its boundary, the situation is somewhat
more complicated.  CAPMS first estimates the fraction of individuals in a given age group (e.g., ages 4 to
9) that reside in the part of each county within the gth grid-cell.  CAPMS calculates this fraction by simply
dividing the population all ages of a given county within the gth grid-cell by the total population in the gth

grid-cell:
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Multiplying this fraction with the number of individuals ages 4 to 9 in the year 2000 gives an estimate of
the number of individuals ages 4 to 9 that reside in the fraction of the county within the gth grid-cell in the
year 2000:

To then forecast the population in 2010, we scale the 2000 estimate with the ratio of the county projection
for 2010 to the county projection for 2000:

Combining all these steps for “c” counties within the gth grid-cell, we forecast the population of persons
ages 4 to 9 in the year 2010 as follows:

In the case where there are multiple age groups and multiple counties, CAPMS first calculates the
forecasted population level for individual age groups, and then combines the forecasted age groups.  In
calculating the number of children ages 4 to 12, CAPMS calculates:

Since the Woods and Poole (2001) projections only extend through 2025, we used the existing
projections and constant growth factors to provide additional projections.  To estimate population levels
beyond 2025, CAPMS linearly extrapolates from the final two years of data.  For example, to forecast
population in 2030, CAPMS calculates:

Exhibit B-4 summarizes the forecasted age-stratified, state-level populations for 2020 and 2030.  In
addition, to provide a point of comparison, it includes population levels for year 2000.
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Exhibit B-4.  State-Level Population Estimates by Age Group

2000 2020 2030

State 0-18 18-64 65+ 0-18 18-64 65+ 0-18 18-64 65+

AL 1,126,337 2,740,965 579,798 1,212,702 3,057,540 909,065 1,284,828 3,069,518 1,195,921

AZ 1,371,099 3,091,693 667,839 1,832,737 4,351,254 1,309,943 2,117,749 4,708,843 1,812,966

AR 681,003 1,618,378 374,019 769,208 1,821,876 557,233 832,285 1,861,954 698,259

CA 9,254,212 21,021,768 3,595,658 10,105,474 25,308,061 5,717,329 10,895,067 26,084,324 7,681,464

CO 1,101,772 2,783,415 416,073 1,321,930 3,359,731 954,691 1,498,688 3,453,808 1,370,557

CT 839,051 2,096,330 470,183 821,773 2,110,504 588,222 845,210 1,991,695 728,973

DE 195,997 485,877 101,726 213,375 571,224 149,015 227,024 574,497 204,731

DC 120,659 381,502 69,898 95,389 337,146 103,401 93,833 305,565 123,728

FL 3,643,004 9,531,774 2,807,597 4,466,384 12,098,406 4,472,647 5,026,785 12,483,019 5,933,620

GA 2,176,259 5,224,918 785,275 2,600,100 6,296,967 1,328,722 2,851,139 6,620,751 1,778,194

ID 369,522 778,515 145,916 451,473 980,346 282,616 507,776 1,045,592 374,826

IL 3,247,904 7,671,362 1,500,025 3,286,653 8,148,579 2,069,429 3,425,612 7,962,757 2,669,430

IN 1,581,993 3,745,661 752,831 1,691,800 4,113,510 1,087,932 1,800,717 4,096,828 1,421,006

IA 737,415 1,752,696 436,213 734,433 1,820,333 593,034 766,374 1,750,358 755,945

KS 714,371 1,617,818 356,229 760,573 1,795,227 499,065 814,382 1,778,859 653,139

KY 998,042 2,538,933 504,793 1,077,101 2,762,379 801,696 1,154,120 2,750,564 1,052,988

LA 1,221,651 2,730,396 516,929 1,247,161 2,952,038 850,018 1,318,748 2,917,899 1,116,293

ME 299,691 791,830 183,402 284,880 852,466 289,399 297,507 807,626 394,873

MD 1,350,517 3,346,661 599,307 1,453,726 3,868,715 926,465 1,559,338 3,877,266 1,256,566

MA 1,508,818 3,980,116 860,162 1,533,618 4,071,543 1,144,857 1,604,543 3,871,104 1,469,089

MI 2,596,118 6,123,307 1,219,018 2,587,563 6,590,540 1,798,905 2,703,858 6,417,627 2,366,125

MN 1,285,100 3,040,113 594,266 1,413,120 3,525,458 948,035 1,547,597 3,524,435 1,298,319

MS 779,939 1,721,196 343,523 826,142 1,912,067 513,412 867,469 1,926,497 667,632

MO 1,428,853 3,410,978 755,379 1,526,846 3,830,433 1,062,471 1,631,969 3,798,554 1,404,065

MT 228,916 552,330 120,949 234,129 612,736 241,971 258,376 604,179 322,696

NE 450,372 1,028,696 232,195 483,340 1,148,129 329,112 522,703 1,142,368 426,556

NV 510,633 1,268,694 218,929 757,488 1,921,749 477,249 904,840 2,150,250 654,589

NH 309,490 778,326 147,970 321,958 906,776 236,489 346,320 897,774 329,510



Exhibit B-4.  State-Level Population Estimates by Age Group (Continued)

2000 2020 2030

State 0-18 18-64 65+ 0-18 18-64 65+ 0-18 18-64 65+

Abt Associates Inc. April 2003B-8

NJ 2,074,020 5,227,192 1,113,136 2,126,538 5,560,594 1,507,553 2,222,228 5,402,892 1,949,786

NM 506,558 1,100,262 212,225 583,389 1,372,898 412,394 644,935 1,420,580 572,907

NY 4,696,232 11,831,869 2,448,352 4,487,417 11,815,310 3,179,326 4,540,245 11,246,710 3,953,934

NC 1,977,387 5,102,877 969,048 2,399,345 6,081,807 1,588,246 2,646,039 6,337,401 2,079,430

ND 162,017 385,705 94,478 152,979 407,052 152,185 160,056 387,072 203,240

OH 2,889,207 6,956,175 1,507,757 2,894,902 7,316,549 2,031,922 3,021,197 7,084,923 2,597,112

OK 894,531 2,100,173 455,950 968,204 2,255,616 685,395 1,037,634 2,249,445 865,166

OR 846,233 2,136,988 438,177 1,028,841 2,593,792 824,166 1,161,142 2,731,400 1,065,084

PA 2,930,189 7,431,699 1,919,165 2,807,320 7,589,422 2,473,482 2,879,828 7,112,827 3,152,928

RI 252,438 643,479 152,402 248,650 664,840 185,270 253,697 626,436 236,588

SC 1,017,627 2,509,052 485,333 1,125,147 2,936,359 879,310 1,217,702 2,989,589 1,188,398

SD 202,496 444,217 108,131 209,379 498,258 159,468 222,092 487,168 215,460

TN 1,402,958 3,583,013 703,311 1,614,405 4,118,556 1,147,546 1,759,007 4,213,846 1,513,183

TX 5,891,741 12,887,542 2,072,532 7,108,830 15,994,222 3,802,007 7,929,363 16,840,990 5,236,651

UT 724,466 1,318,481 190,222 989,440 1,826,327 368,454 1,120,100 2,046,412 497,421

VT 147,949 383,368 77,510 137,590 414,505 138,315 144,053 397,442 190,941

VA 1,743,459 4,542,721 792,333 1,955,331 5,201,333 1,308,689 2,132,729 5,295,036 1,734,954

WA 1,511,831 3,720,140 662,148 1,785,937 4,644,371 1,174,213 2,006,978 4,857,761 1,581,410

WV 404,484 1,126,965 276,895 388,379 1,094,529 403,851 404,280 1,038,496 488,364

WI 1,369,215 3,291,907 702,553 1,413,693 3,680,062 1,070,942 1,511,982 3,612,218 1,450,806

WY 128,585 307,504 57,693 124,005 314,574 117,862 132,595 301,356 154,460
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B .3 Woods & Poole Data

Woods & Poole (2001) developed county-level forecasts for each year from 2000 through 2025, for
three racial groups “Black,” “White,” and “Other,” and by age and by gender.  For the Hispanic ethnic
group, Woods and Poole developed forecasts just for the total population, and not by age and gender.  As
discussed in the section on population forecasts, CAPMS uses these forecasts to simply scale the 2000
Census block data, in order to estimate the population in the population grid-cells for any given year after
2000.

B .3.1 Aligning Woods & Poole FIPS Codes with CAPMS FIPS Codes

The county geographic boundaries used by Woods & Poole are somewhat more aggregated than the
county definitions used in the 2000 Census (and CAPMS), and the FIPS codes used by Woods and Poole
are not always the standard codes used in the Census.  To make the Woods and Poole data consistent with
the county definitions in CAPMS, we disaggregated the Woods and Poole data and changed some of the
FIPS codes.  Exhibit B-5 lists the discrepancies in the county definitions between Woods & Poole and
those used in CAPMS.

To assign the population in the more aggregated Woods & Poole county definitions to the more
disaggregated definitions used in CAPMS (and the U.S. Census), we used the total county population
from the 2000 U.S. Census.  We then assumed that the age and racial groups were distributed uniformly
across the CAPMS counties contained within a Woods & Poole county definition.  For example, in
estimating the population of children ages 4-9 in county “c” contained within a more broadly defined
Woods & Poole county, we would do the following:

After this factor was applied, we rounded the estimates to the nearest integer so as to avoid having data
with “partial people.”
  

Exhibit B-5.  Linkage Between Woods & Poole County Definitions and CAPMS County Definitions

Woods and Poole Counties (FIPS) Counties in CAPMS (FIPS)

Northwest Arctic Borough, AK (02188) Kobuk, AK (02140)

Remainder of Alaska, AK (02999) Aleutian Islands, AK (02010), Aleutian Islands East Borough, AK (02013), Aleutian
Islands West Census Area, AK (02016), Bethel Census Area, AK (02050), Denali
Borough, AK (02068), Dillingham Census Area, AK (02070), Haines Borough, AK
(02100), Kenai Peninsula Borough, AK (02122), Lake and Peninsula Borough, AK
(02164), North Slope Borough, AK (02185), Prince of Wales-Outer Ketchikan, AK
(02201), Sitka Borough, AK (02220), Skagway-Yukatat-Angoon, AK (02231),
Skagway-Hoonah-Angoon Census Area, AK (02232), Southeast Fairbanks Census
Area, AK (02240), Valdez-Cordova Census Area, AK (02261), Wrangell-Petersburg
Census Area, AK (02280), Yakutat Borough, AK (02282), Yukon-Koyukuk, AK
(02290)

Yuma + La Paz, AZ (04027) La Paz, AZ (04012), Yuma, AZ (04027)

Miami-Dade, FL (12086) Dade, FL (12025)

Maui + Kalawao, HI (15901) Kalawao, HI (15005), Maui, HI (15009)



Exhibit B-5.  Linkage Between Woods & Poole County Definitions and CAPMS County Definitions
(Continued)

Woods and Poole Counties (FIPS) Counties in CAPMS (FIPS)
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Fremont, ID (16043) Fremont, ID (16043), Yellowstone Park, ID

Park, MT (30067) Park, MT (30067), Yellowstone Park, MT (30113)

Valencia + Cibola, NM (35061) Cibola, NM (35006), Valencia, NM (35061)

Halifax, VA (51083) Halifax, VA (51083), South Boston City, VA (51780)

Albemarle + Charlottesville, VA (51901) Albemarle, VA (51003), Charlottesville City, VA (51540)

Alleghany + Clifton Forge + Covington,
VA (51903)

Alleghany, VA (51005), Clifton Forge City, VA (51560), Covington City, VA
(51580)

Augusta + Staunton + Waynesboro, VA
(51907)

Augusta, VA (51015), Staunton City, VA (51790), Waynesboro City, VA (51820)

Bedford + Bedford City, VA (51909) Bedford, VA (51019), Bedford City, VA (51515)

Campbell + Lynchburg, VA (51911) Campbell, VA (51031), Lynchburg City, VA (51680)

Carroll + Galax, VA (51913) Carroll, VA (51035), Galax City, VA (51640)

Dinwiddie + Colonial Heights +
Petersburg, VA (51918)

Dinwiddie, VA (51053), Colonial Heights City, VA (51570), Petersburg City, VA
(51730)

Fairfax + Fairfax City + Falls Church City,
VA (51919)

Fairfax, VA (51059), Fairfax City, VA (51600), Falls Church City, VA (51610)

Frederick + Winchester, VA (51921) Frederick, VA (51069), Winchester City, VA (51840)

Greensville + Emporia, VA (51923) Greensville, VA (51081), Emporia City, VA (51595)

Henry + Martinsville, VA (51929) Henry, VA (51089), Martinsville City, VA (51690)

James City + Williamsburg, VA (51931) James City County, VA (51095), Williamsburg City, VA (51830)

Montgomery + Radford, VA (51933) Montgomery, VA (51121), Radford City, VA (51750)

Pittsylvania + Danville, VA (51939) Pittsylvania, VA (51143), Danville City, VA (51590)

Prince George + Hopewell, VA (51941) Prince George, VA (51149), Hopewell City, VA (51670)

Prince William + Manassas + Manassas
Park, VA (51942)

Prince William, VA (51153), Manassas City, VA (51683), Manassas Park City, VA
(51685)

Roanoke + Salem, VA (51944) Roanoke, VA (51161), Salem City, VA (51775)

Rockbridge + Buena Vista + Lexington,
VA (51945)

Rockbridge, VA (51163), Buena Vista City, VA (51530), Lexington City, VA
(51678)

Rockingham + Harrisonburg, VA (51947) Rockingham, VA (51165), Harrisonburg City, VA (51660)

Southampton + Franklin, VA (51949) Southampton, VA (51175), Franklin City, VA (51620)

Spotsylvania + Fredericksburg, VA
(51951)

Spotsylvania, VA (51177), Fredericksburg City, VA (51630)

Washington + Bristol, VA (51953) Washington, VA (51191), Bristol City, VA (51520)

Wise + Norton, VA (51955) Wise, VA (51195), Norton City, VA (51720)

York + Poquoson, VA (51958) York, VA (51199), Poquoson City, VA (51735)

Shawano (includes Menominee), WI
(55901)

Menominee, WI (55078), Shawano, WI (55115)
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B .3.2 Age, Gender, Race, and Ethnicity

We generated the same 38 age and gender categories developed from the 1990 and 2000 Census data. 
Since these projections are available for every year of age, it is a simple matter to sum the individual
years to get the same age categories used by CAPMS.

However, the only racial categories available are “White,” “Black,” and “Other.”  Since we do not
have an Asian or Native American group, or an Other group which is consistent with the definition used
by the 1990 and 2000 Census data, we assume that projection data’s Other category is representative of
all 3 groups, and that they move together over time.

The county projections only forecast the Hispanic population of all ages, and does not have separate
gender and age forecasts.  Lacking further information, we use the ratio of future-year all age population
to the year 2000 all age population when forecasting any particular age group of Hispanics.  In effect, we
assume for all forecast years the same distribution of age and gender as found in the 2000 Census.

B .3.3 Creating Growth Ratios from Absolute Population Values

For each year from 2000 through 2025 and for each of the 256 demographic groups listed in Exhibit
B-1, CAPMS stores the ratio of the future-year to year 2000 county-level population projections.  As
described below, these ratios are used to forecast population levels in the population grid-cells used by
CAPMS to health effects.

Note that there are a small number of cases were the 2000 county population for a specific
demographic group is zero, so the ratio of any future year to the year 2000 data is undefined.   In these
relatively rare cases, we set the year 2000 ratio and all subsequent ratios to 1, assuming no growth.

There are an even smaller number of cases where a total population variable dwindles from some non-
zero number to zero, creating ratios of zero.  Variables which represent a subpopulation of the first
variable may not be zero, however.  In these cases, we set all subset population variables for that year to
zero.  

For instance, if a county only had one person in it for the year 2000 - a 79 year old black male - we set
all variables (excluding total variables and BlackMale75to79) to a ratio of 1, because their 2000 values of
0 produce undefined ratios.  If the man dies at age 82, the total black population variable for years 2003
and beyond is calculated as 0/1 = 0.  Thus for each of those years where the total black population is
listed as zero, we go back and set all black population variables to zero, to reflect the knowledge that the
block is empty.  For all variables except the BlackMale75to79 age group (already zero), 1 becomes 0.    
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 Appendix C: Air Quality Forecasts

This appendix summarizes the air pollution measures used in this analysis for PM and ozone.  Exhibits
C-1 through C-5 presents summaries of the air quality metrics used in this analysis.
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Exhibit C-1.  Summary of Ozone Air Quality Metrics Used in Benefits Analysis for Nonroad
Engine/Diesel Fuel Standards: Eastern U.S.

2020 c 2030 c

Metric a Statistic b  Base Case Change % Change  Base Case Change % Change

1-Hour Maximum Minimum 28.85 -0.81 -2.80% 28.81 -1.24 -4.31%

Maximum 93.94 -0.85 -0.90% 94.70 -1.61 -1.70%

Average 45.54 -1.05 -2.30% 45.65 -1.66 -3.64%

Median 45.45 -1.23 -2.71% 45.52 -1.73 -3.80%

Pop-Weighted Average 51.34 -0.67 -1.31% 51.47 -1.16 -2.25%

5-Hour Average Minimum 24.90 -0.67 -2.68% 24.87 -1.03 -4.13%

Maximum 68.69 -0.20 -0.29% 69.11 -0.44 -0.64%

Average 38.99 -0.85 -2.17% 39.08 -1.35 -3.45%

Median 38.94 -0.92 -2.39% 39.00 -1.40 -3.58%

Pop-Weighted Average 42.77 -0.47 -1.10% 42.90 -0.84 -1.96%

8-Hour Average Minimum 24.15 -0.64 -2.64% 24.12 -0.98 -4.07%

Maximum 68.30 -0.21 -0.31% 68.72 -0.46 -0.67%

Average 38.46 -0.83 -2.16% 38.55 -1.33 -3.44%

Median 38.44 -0.89 -2.33% 38.50 -1.45 -3.76%

Pop-Weighted Average 42.07 -0.46 -1.08% 42.19 -0.82 -1.93%

12-Hour Average Minimum 22.42 -0.58 -2.57% 22.40 -0.89 -3.96%

Maximum 66.06 -0.17 -0.25% 66.46 -0.38 -0.58%

Average 36.59 -0.78 -2.13% 36.66 -1.25 -3.40%

Median 36.61 -0.84 -2.30% 36.66 -1.43 -3.89%

Pop-Weighted Average 39.65 -0.40 -1.00 39.75 -0.72 -1.80%

24-Hour Average Minimum 15.20 -0.35 -2.28% 15.19 -0.54 -3.52%

Maximum 55.95 0.10 0.18% 56.23 0.04 0.07%

Average 28.93 -0.57 -1.96% 28.98 -0.91 -3.14%

Median 28.92 -0.63 -2.15% 28.98 -1.01 -3.48%

Pop-Weighted Average 30.24 -0.18 -0.60% 30.29 -0.37 -1.23%
a These ozone metrics are calculated at the CAMX grid-cell level and based on the results of spatial and temporal Voronoi
Neighbor Averaging.  Except for the daily 24-hour average, these ozone metrics are calculated over relevant time periods during
the daylight hours of the “ozone season,” i.e., May through September.  For the 5-hour average, the relevant time period is 10 am
to 3 pm; for the 8-hour average, it is 9 am to 5 pm; and, for the 12-hour average it is 8:00 am to 8 pm.  
b The base case minimum (maximum) is the value for the CAMX grid cell with the lowest (highest) value.  We calculated the
population-weighted average by summing the product of the projected CAMX grid-cell population and the estimated CAMX grid-
cell seasonal ozone concentration over all grid-cells, and then dividing by the total population. 
c The change is defined as the control case value minus the base case value.  The percent change is the “Change” divided by the
“Base Case,” and then multiplied by 100 to convert the value to a percentage.
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Exhibit C-2.  Summary of Ozone Air Quality Metrics Used in Benefits Analysis for Nonroad
Engine/Diesel Fuel Standards: Western U.S.

2020 c 2030 c

Metric a Statistic b  Base Case Change % Change  Base Case Change % Change

1-Hour Maximum Minimum 27.48 -0.01 -0.03% 27.48 -0.01 -0.05%

Maximum 201.28 4.87 2.42% 208.02 6.26 3.01%

Average 47.02 -0.62 -1.31% 47.04 -0.97 -2.07%

Median 46.10 -0.56 -1.19% 46.06 -0.66 -1.43%

Pop-Weighted Average 63.80 0.34 0.54% 64.23 0.38 0.58%

5-Hour Average Minimum 24.20 -0.01 -0.04% 24.21 -0.01 -0.05%

Maximum 163.41 2.55 1.56% 168.89 6.04 3.57%

Average 41.11 -0.52 -1.26% 41.13 -0.82 -2.00%

Median 40.48 -0.40 -1.04% 40.46 -0.69 -1.70%

Pop-Weighted Average 53.56 0.45 0.84% 53.89 0.55 1.03%

8-Hour Average Minimum 23.77 -0.01 -0.04% 23.77 -0.01 -0.05%

Maximum 157.49 1.33 0.84% 161.92 5.94 3.67%

Average 40.68 -0.51 -1.25% 40.69 -0.81 -1.99%

Median 40.11 -0.36 -1.03% 40.09 -0.72 -1.79%

Pop-Weighted Average 51.96 0.46 0.88% 52.29 0.57 1.10%

12-Hour Average Minimum 22.13 0.31 1.39% 22.09 0.44 2.01%

Maximum 140.48 1.65 1.18% 143.59 1.78 1.24%

Average 39.30 -0.48 -1.23% 39.31 -0.77 -1.95%

Median 38.85 -0.38 -0.97% 38.82 -0.58 -1.50%

Pop-Weighted Average 47.68 0.49 1.02% 47.99 0.63 1.32%

24-Hour Average Minimum 14.08 0.22 1.60% 14.03 0.32 2.30%

Maximum 95.27 0.41 0.43% 96.59 0.29 0.30%

Average 33.42 -0.38 -1.14% 33.42 -0.61 -1.82%

Median 32.97 -0.30 -0.89% 32.95 -0.61 -1.85%

Pop-Weighted Average 35.53 0.47 1.31% 35.74 0.63 1.77%
a These ozone metrics are calculated at the CAMX grid-cell level and based on the results of spatial and temporal Voronoi
Neighbor Averaging.  Except for the daily 24-hour average, these ozone metrics are calculated over relevant time periods during
the daylight hours of the “ozone season,” i.e., May through September.  For the 5-hour average, the relevant time period is 10 am
to 3 pm; for the 8-hour average, it is 9 am to 5 pm; and, for the 12-hour average it is 8:00 am to 8 pm.  
b The base case minimum (maximum) is the value for the CAMX grid cell with the lowest (highest) value.  We calculated the
population-weighted average by summing the product of the projected CAMX grid-cell population and the estimated CAMX grid-
cell seasonal ozone concentration over all grid-cells, and then dividing by the total population. 
c The change is defined as the control case value minus the base case value.  The percent change is the “Change” divided by the
“Base Case,” and then multiplied by 100 to convert the value to a percentage.
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Exhibit C-3.  Forecasted SUM06 in 2020 and 2030

2020 c 2030 c

Region a Statistic b Base Case Change % Change Base Case Change % Change

Eastern U.S. Minimum 0.00 0.00 - 0.00 0.00 -

Maximum 67.24 -3.30 -4.91% 68.63 -5.54 -8.07%

Average 4.74 -0.72 -15.10% 4.88 -1.09 -22.43%

Median 2.18 -0.76 -35.02% 2.21 -0.77 -34.84%

Population-Weighted
Average

12.81 -0.71 -5.57% 13.23 -1.17 -8.84%

Western U.S. Minimum 0.00 0.00 - 0.00 0.00 -

Maximum 132.73 6.09 4.59% 137.71 8.45 6.14%

Average 2.78 -0.22 -7.85% 2.83 -0.33 -11.72%

Median 0.00 0.00 - 0.00 0.00 -

Population-Weighted
Average

33.54 0.39 1.17% 34.63 0.43 1.24%

a SUM06 is defined as the cumulative sum of hourly ozone concentrations over 0.06 ppm (or 60 ppb) that occur during daylight
hours (from 8am to 8pm) in the months of May through September.  It is calculated at the county level for use in agricultural
benefits based on the results of temporal and spatial Voronoi Neighbor Averaging.
b The base case minimum (maximum) is the value for the county level observation with the lowest (highest) concentration.  We
calculated the population-weighted average by summing the product of the year 2000 county population and the estimated county
level ozone concentration over all counties, and then dividing by the total population of all counties.
c The change is defined as the control case value minus the base case value.  The percent change is the “Change” divided by the
“Base Case,” which is then multiplied by 100 to convert the value to a percentage.

Exhibit C-4.  Summary of Base Case PM Air Quality and Changes Due to Nonroad Engine/Diesel
Fuel Standards: 2020 and 2030

2020 b 2030 b

Statistic for Annual Means  a Base Case Change % Change Base Case Change % Change

Minimum for a 2.18 -0.02 -0.78% 2.33 -0.02 -1.01%

Maximum 29.85 -1.36 -4.56% 32.85 -2.03 -6.18%

Average 8.10 -0.20 -2.49% 8.37 -0.28 -3.38%

Median 7.50 -0.18 -2.68% 7.71 -0.22 -2.80%

Population-Weighted Average 12.42 -0.42 -3.34% 13.07 -0.59 -4.48%
a These statistics are for the annual mean PM2.5 levels for REMSAD grid-cells, and are based on the results of spatial and temporal
Voronoi Neighbor Averaging.  The base case minimum (maximum) is the value for the populated grid-cell with the lowest
(highest) annual mean.  The “average” is the simple average of all REMSAD grid-cell means.  The “median” is the median of the
REMSAD grid-cell means.  We calculated the “population-weighted average” by summing the product of the projected grid-cell
population and the estimated PM concentration over all grid-cells, and then dividing by the total population of all grid-cells.
b The change is defined as the control case value minus the base case value.  The percent change is the “Change” divided by the
“Base Case,” which is then multiplied by 100 to convert the value to a percentage.
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Table C-5  Summary of Absolute and Relative Changes in PM Air Quality Due to Nonroad
Engine/Diesel Fuel Standards: 2020 and 2030

Type of Change a Statistic b 2020 PM2.5 Annual Mean 2030 PM2.5 Annual Mean

Absolute Change from Base
Case (µg/m3)

  Minimum -1.36 -2.03

  Maximum -0.02 -0.02

  Average -0.20 -0.28

  Median -0.19 -0.26

  Population-Weighted Average -0.42 -0.59

Relative Change from Base
Case (%)

  Minimum -12.24% -15.52%

  Maximum -0.33% -0.44%

  Average -2.44% -3.32%

  Median -2.33% -3.13%

  Population-Weighted Average -3.28% -4.38%
a The changes are based on the results of spatial and temporal Voronoi Neighbor Averaging.  The absolute change is defined as the
control case value minus the base case value for each REMSAD grid-cell.  The relative change is defined as the absolute change
divided by the base case value, or the percentage change, for each gridcell.  The information reported for the relative changes does
not necessarily reflect the same gridcells as those portrayed for absolute changes.
b We calculated the population-weighted average by summing the product of the projected REMSAD grid-cell population and the
estimated gridcell PM absolute/relative measure of change over all grid-cells, and then dividing by the total population of all grid-
cells.
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Appendix D: Derivation of Concentration-Response Functions

This appendix reviews the steps we performed in taking models from the epidemiological study and
converting them into concentration-response (C-R) functions, when we then use to quantify the change in
adverse health effects due to a change in air pollution exposure.  The most common functional forms are
linear, log-linear, and logistic, with the log-linear model by far the most widely used.  All three are
discussed below. 

D.1 The Linear Model

A linear model between the adverse health effect, y, and the pollutant concentration, x, is of the form

A linear model includes the factors that are believed to affect the incidence of the health effect, of
which the pollutant would be one.  So, the variable “"” in the linear C-R function consists of all the other
independent variables in the regression, typically evaluated at their mean values, times their respective
coefficients.

The function describing the relationship between a change in x and the corresponding change in
incidence (rate) of the health effect from the baseline level (y0) to the post-control level (yc) is then:

If y denotes an incidence rate, then )y denotes the change in the incidence rate.  The expected number
of cases avoided would then be calculated by multiplying this )y by the relevant population.  If y denotes
an incidence count, then the $ is first divided the baseline study population to generate an incidence rate. 
The expected number of cases avoided can then be calculated by multiplying )y by the relevant
population of interest:

The coefficient, $, and standard error of $ (F $) are reported directly in studies presenting results from
linear regression models.

D.2 The Log-linear Model

The most commonly used functional form for criteria air pollutant C-R functions is the log-linear
model.  It defines the relationship between x and y to be of the form

or, equivalently,



56   Other covariates besides pollution clearly affect mortality.  The parameter B might be thought of as containing these other
covariates, for example, evaluated at their means.  That is, B = Boexp{$1x1 + ... + $nxn}, where Bo is the incidence of y when all
covariates in the model are zero, and x1, ... , xn are the other covariates evaluated at their mean values.  The parameter B drops out of
the model, however, when changes in y are calculated, and is therefore not important.

Abt Associates Inc. April 2003D-2

CasesAvoided y pop= ⋅∆ (
,

).
100 000

RR
y
y

high

low
= .

∆y y y Be Bec
x xc= − = −⋅ ⋅

0
0β β .

∆ ∆y y e x= ⋅ −⋅
0 1( ) ,β

RR
y
y

ex
high

low

x
∆

∆
*

*
.= = ⋅β

β = ln( ) .*
RR
x∆

where the parameter B is the incidence (rate), y, when the pollutant concentration, x, is zero; the
parameter $ is the coefficient of x; ln(y) is the natural logarithm of y; and " = ln(B).56  

Estimating Avoided Cases

The relationship between  )x and )y is:

This may be rewritten as:

where y0 is the baseline incidence (rate) of the health effect -- i.e., the incidence (rate) before the change
in x.  If y is incidence rate rather than incidence, then the change in incidence rate, )y, must be multiplied
by the relevant population to get the expected number of cases avoided.  For example, if y denotes the
annual number of cases of the adverse health effect per 100,000 population, and pop denotes the
population, then the expected number of cases avoided is calculated as

Estimating the Coefficient ($)

Epidemiological studies that estimate log-linear C-R functions often report a relative risk for a specific
)x, rather than the coefficient, $, in the C-R function itself.  The relative risk (RR) is simply the ratio of
two risks corresponding to two levels of pollutant concentration –  the “high” risk (corresponding to the
higher pollutant level, x = xhigh) and the lower risk (corresponding to the lower pollutant level, x = xlow):

Using the original log-linear C-R function above, it can be shown that the relative risk associated with
a specific change in pollutant concentration of )x* = xhigh - xlow can be written as

Taking the natural log of both sides, the coefficient in the C-R function underlying the relative risk can
be derived as:
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Once the pollutant coefficient, $, has been calculated, the change in incidence (rate), )y,
corresponding to any change in pollutant concentration, )x, can be calculated, using the relationship
between  )x and )y given above, the baseline incidence (rate) and assessment population.

Estimating the Standard Error of $ (F $)

The standard error of $ (F $) is not often directly reported in studies presenting results from log-linear
regression models.  Results are most commonly presented as a relative risk and 95% confidence interval. 
The 95% confidence interval is defined as follows:

Based on this equation, the standard error of $ (F $) can be estimated from the relative risk (RR), upper
limit of the 95% confidence interval (UL), and lower limit of the 95% confidence interval (LL), as
follows:

Some studies report only a central effect estimate and t-statistic.  The t-statistic describes the strength
of the observed pollutant-health effect association.  It is defined as the ratio of the coefficient, $, to the
standard error of $ (F $).  The standard error of $ (F $) can, therefore, be estimated from the t-statistic as
follows:
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The Log-Linear Model: An Example

Lippmann et al. (2000) reported a relative risk (RR) of 1.045 for premature (non-accidental)
mortality associated with an increase in daily PM2.5 of 36 :g/m3 in Detroit, MI.  The PM2.5
coefficient in the C-R function from which the RR was derived was back-calculated to be:

β = =
ln( . )

. .
1045
36

0 001223

Suppose we use the C-R function from Lippmann et al. (2000) to estimate the change in incidence
of premature deaths in Wayne County, MI (which contains Detroit) in the year 2000 resulting
from a decrease in PM2.5 concentration of 15 :g/m3 per day.  The baseline incidence of non-
accidental mortality in Detroit is estimated to be 891.12 per year per 100,000 general population
(for 1998)*, or 2.441 per day per 100,000 general population.  The population of Wayne County,
MI in the year 2000 is estimated to be 2,061,162.  The inputs to this calculation are:

)x = -15
y0 = 2.441 per day per 100,000 general population
$ = 0.001223
general population of Wayne County, MI =  2,061,162.

The number of avoided premature deaths per day is estimated to be:
∆ ∆y y e popx= −0 1 100 000( ) * ( / , )*β

= −−2 441 1 20 611620 001223 15. * ( ) * .. *e

.= − 0 914503325.

That is, a decrease in PM2.5 of 15 :g/m3 per day is predicted to result in 0.914503325 premature
deaths avoided per day in Wayne County, MI.  Over the year (the year 2000 was a leap year, and
so had 366 days), that’s 

0.914503325*366 
= 334.7 premature deaths avoided.

*Data obtained from the Centers for Disease Control (CDC Wonder, an online database).



57   Greene (1997, Chapter 19) presents models with discrete dependent variables; in particular, page 874 presents the logit model. 
(See also Judge et al. (1985, p.  763).)

58   Note that because )y here is a change in probability of occurrence (rather than a change in the rate per 100,000 population), it is
necessary to multiply by the population rather than by the population/100,000.
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D.3 The Logistic Model

In some epidemiological studies, a logistic model is used to estimate the probability of an occurrence
of an adverse health effect.  Given a pollutant level, x, and a vector of other explanatory variables, Z, the
logistic model assumes the probability of an occurrence is:

where $ is the coefficient of the pollutant concentration, x, and " is a vector of coefficients of the
variables in the vector Z.57 

Estimating Avoided Cases

The change in the probability of an occurrence ()y) corresponding to a change in the level of the
pollutant from xc to x0 (= )x), all other covariates held constant, may be derived from the original C-R
function above:  
Once again, to calculate the expected number of avoided cases of the adverse effect, it is necessary to

multiply by the population:58

Estimating the Coefficient ($)

The estimated pollutant coefficient, $, in the original C-R function is typically not reported in studies
that use the logistic model.  Instead, the odds ratio corresponding to a specific change in x is reported.

The odds of an occurrence is defined as:

It can be shown that
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The odds ratio is just the ratio of the odds when the pollutant is at a specified higher level, xhigh, to the
odds when the pollutant is at a specified lower level, xlow:

Often the odds ratio corresponding to a specified change in x, call it )x*, is the only measure of the
effect of x reported from a study using a logistic model (just as the relative risk corresponding to a
specified change in x is often the only measure of the effect of x reported from a study using a log-linear
model).  However, it is easy to calculate the underlying pollutant coefficient, $, from the odds ratio as
follows:

Given the pollutant coefficient, $, and the baseline probability of occurrence, y0, the change in the
probability, )y, associated with any change in pollutant concentration, )x, can be derived using the
equation for )y above.  The expected number of avoided cases of the adverse effect is then obtained by
multiplying by the population.

Estimating the Standard Error of $ (F $)

The standard error of $ (F $) is not often directly reported in studies presenting results from logistic
regression models.  Results are most commonly presented as an odds ratio and 95% confidence interval. 
The 95% confidence interval is defined as follows:

Based on this equation, the standard error of $ (F $) can be estimated from the odds ratio (OR), upper
limit of the 95% confidence interval (UL), and lower limit of the 95% confidence interval (LL), as
follows:
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Some studies report only a central effect estimate and t-statistic.  The t-statistic describes the strength
of the observed pollutant-health effect association.  It is defined as the ratio of the coefficient, $, to the
standard error of $ (F $).  The standard error of $ (F $) can, therefore, be estimated from the t-statistic as
follows:
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The Logistic Model: An Example

Schwartz and Neas (2000) reported an odds ratio of 1.33 for lower respiratory symptoms (LRS)
among school children, ages 7 - 14, corresponding to an increase in daily PM2.5 concentration of
15 :g/m3.  The PM2.5 coefficient in the logistic C-R function from which the odds ratio was
derived is back-calculated as

 β = =
ln( . )

. .
133
15

0 019012

The baseline incidence rate, y0, (the probability per child per day of lower respiratory symptoms)
was estimated in the study to be 0.0012.  

Suppose we use the logistic C-R function from Schwartz and Neas (2000) to estimate the number
of days with LRS avoided among schoolchildren, ages 7-14, in St. Louis during the warm months
of April through August (the months used in the study) if PM2.5 concentrations were reduced by 10
:g/m3 each day.  The inputs to this calculation are:

)x = xc - x0 = -10
y0 = 0.0012
$ = 0.019012
the number of days in April through August = 153
the number of children, ages 7 - 14, in St. Louis area (9 counties) = 307,170.

The number of avoided LRS days among children ages 7-14 in the St. Louis area resulting from a
decrease of 10 :g/m3 PM2.5 per day is estimated to be

∆ ∆y
y

y e y
y popx=

− +
−











−

0

0 0
01( ) *

**β

= -0.0002076*307,170 = –63.7568 per day.

There are 153 days in April through August, for a total of -63.7568*153 = 

-9754.79, or 
9,754.79 LRS days avoided. 
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Appendix E: Baseline Incidence Rates for Adverse Health Effects

Concentration-response (C-R) functions developed from log-linear or logistic models estimate the
percent change in an adverse health effect associated with a given pollutant change.  In order to estimate
the absolute change in incidence using these functions, we need the baseline incidence rate of the adverse
health effect.  This appendix describes the data used to estimate baseline incidence rates for the health
effects considered in this analysis.

E.1 Mortality

Age, cause, and county-specific mortality rates were obtained from the U.S. Centers for Disease
Control (CDC) for the years 1996 through 1998.  CDC maintains an online data repository of health
statistics, CDC Wonder, accessible at http://wonder.cdc.gov/.  The mortality rates provided are derived
from U.S. death records and U.S. Census Bureau postcensal population estimates.  Mortality rates were
averaged across three years (1996 through 1998) to provide more stable estimates.  When estimating rates
for age groups that differed from the CDC Wonder groupings, we assumed that rates were uniform across
all ages in the reported age group.  For example, to estimate mortality rates for individuals ages 30 and
up, we scaled the 25-34 year old death count and population by one-half and then generated a population-
weighted mortality rate using data for the older age groups.  Population-weighted national mortality rates
are presented in Exhibit E-1.

Exhibit E-1.  National Mortality Rates for Selected Conditions, by Age Group

Mortality Category
(ICD codes)

Mortality Rate by Age Group (deaths per 100 people per year)

25+ 30+ 25-29 30-34 35-44 45-54 55-64 65-74 75-84 85+

All-Cause 1.288 1.436 0.119 0.119 0.211 0.437 1.056 2.518 5.765 15.160

Non-Accidental (ICD
<800)

1.219 1.366 0.057 0.057 0.150 0.383 1.006 2.453 5.637 14.859

Chronic Lung Disease
(ICD 490-496)

0.062 0.070 0.001 0.001 0.002 0.009 0.046 0.166 0.367 0.561

Cardio-Pulmonary 0.650 0.731 0.013 0.013 0.044 0.143 0.420 1.163 3.179 9.846

Source: We obtained data from 1996-1998 from the CDC Wonder (http://wonder.cdc.gov/).  County-specific rates are used in the
C-R functions.

E.2 Hospitalizations

Regional hospitalization counts were obtained from the National Center for Health Statistics’ (NCHS)
National Hospital Discharge Survey (NHDS).  NHDS is a sample-based survey of non-Federal, short-stay



59  The following hospital types are excluded from the survey: hospitals with an average patient length of stay of greater than 30
days, federal, military, Department of Veterans Affairs hospitals, institutional hospitals (e.g. prisons), and hospitals with fewer than
six beds.

60   Data are available at ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHDS/

61   See: 1999nhds_summary.pdf (p. 187) for published regional population estimates for 1999. 
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hospitals (<30 days)59, and is the principal source of nationwide hospitalization data.  The survey collects
data on patient characteristics, diagnoses, and medical procedures.

Public use data files for the year 1999 survey were downloaded60 and processed to estimate
hospitalization counts by region.  NCHS groups states into four regions using the following groupings
defined by the U.S. Bureau of the Census:

C Northeast - Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New
York, New Jersey, Pennsylvania

C Midwest - Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota,
South Dakota, Nebraska, Kansas

C South - Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, South
Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, Arkansas, Louisiana,
Oklahoma, Texas

C West - Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, Washington,
Oregon, California, Alaska, Hawaii

We calculated per capita hospitalization rates, by dividing these counts by the estimated regional
population estimates for 1999 that we derived from the U.S. Bureau of the Census and the population
projections used by NHDS to generate the counts.  Note that NHDS started with hospital admission
counts, based on a sample of admissions, and then they used population estimates to generate population-
weighted hospital admission counts that are representative of each region.  This weighting used forecasts
of 1999 population data.  Ideally, we would use these same forecasts to generate our admission rates.
However, while NHDS presented counts of hospital admissions with a high degree of age specificity, it
presented regional population data for only four age groups: 0-14, 15-44, 45-64, and 65+.61  Using only
the NHDS data, we would be limited to calculating regional admission rates for four groups.  Because we
are interested in a broader range of age groups, we turned to 2000 Census.

We used the 2000 Census to obtain more age specificity, and then corrected the 2000 Census figures
so that the total population equaled the total for 1999 forecasted by NHDS.  That is, we sued the
following procedure: (1) we calculated the count of hospital admissions by region in 1999 for the age
groups of interest, (2) we calculated the 2000 regional populations corresponding to these age groups, (3)
calculated regional correction factors, that equal the regional total population in 1999 divided by the
regional total population in 2000 by region, (4) multiplied the 2000 population estimates by these
correction factors, and (5) divided the 1999 regional count of hospital admissions by the estimated 1999
population.

The endpoints in hospitalization studies are defined using different combinations of ICD codes. 
Rather than generating a unique baseline incidence rate for each ICD code combination, for the purposes
of this analysis, we identified a core group of hospitalization rates from the studies and applied the
appropriate combinations of these rates in the C-R functions: 

• all respiratory (ICD-9 460-519)
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• chronic lung disease (ICD-9 490-496)
• asthma (ICD-9 493)
• pneumonia (ICD-9 480-487)
• acute bronchitis (ICD-9 466)
• acute laryngitis (ICD-9 464)
• all cardiovascular (ICD-9 390-459)
• ischemic heart disease (ICD-9 410-414)
• dysrhythmia (ICD-9 427)
• congestive heart failure (ICD-9 428)

For each C-R function, we selected the baseline rate or combination of rates that most closely matches
to the study endpoint definition.  For studies that define chronic lung disease as ICD 490-492, 494-496,
we subtracted the incidence rate for asthma (ICD 493) from the chronic lung disease rate (ICD 490-496). 
In some cases, the baseline rate will not match exactly to the endpoint definition in the study.  For
example, Burnett et al. (2001) studied the following respiratory conditions in infants <2 years of age: ICD
464.4, 466, 480-486, 493.  For this C-R function we apply an aggregate of the following rates: ICD 464,
466, 480-487, 493.  Although they do not match exactly, we assume that relationship observed between
the pollutant and study-defined endpoint is applicable for the additional codes.  Exhibit E-2 presents a
summary of the national hospitalization rates for 1999 from NHDS. 

Exhibit E-2.  Hospitalization Rates, by Region and Age Group

Hospitalization Category ICD-9
Codes

Hospitalization Rate by Age Group 
(admissions per 100 people per year)

0-18 18-24 25-34 35-44 45-54 55-64 65+

Respiratory all respiratory 460-519 1.066 0.271 0.318 0.446 0.763 1.632 5.200

acute laryngitis 464 0.055 0.002 0.001 0.002 0.008 0.000 0.005

acute bronchitis 466 0.283 0.017 0.014 0.017 0.027 0.040 0.156

pneumonia 480-487 0.308 0.069 0.103 0.155 0.256 0.561 2.355

asthma 493 0.281 0.081 0.110 0.099 0.144 0.161 0.205

chronic lung disease 490-496 0.291 0.089 0.124 0.148 0.301 0.711 1.573

Cardiovascular all cardiovascular 390-459 0.043 0.084 0.206 0.678 1.926 4.389 11.629

ischemic heart disease 410-414 0.004 0.008 0.031 0.231 0.902 2.021 3.708

dysrhythmia 427 0.011 0.017 0.027 0.076 0.158 0.392 1.387

congestive heart failure 428 0.003 0.005 0.011 0.011 0.160 0.469 2.167

Source: As described in the text, we obtained the regional count of hospital admissions from National Hospital Discharge Survey
(NHDS), and we obtained the population data from the 2000 U.S. Census and NHDS.

E.3 Emergency Room Visits for Asthma

Regional asthma emergency room visit counts were obtained from the National Hospital Ambulatory
Medical Care Survey (NHAMCS).  NHAMCS is a sample-based survey, conducted by NCHS, designed



62   The target universe of the NHAMCS is in-person visits made in the United States to emergency and outpatient departments of
non-Federal, short-stay hospitals (hospitals with an average stay of less than 30 days) or those whose specialty is general (medical or
surgical) or children’s general. 

63   Data are available at ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHAMCS/
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to collect national data on ambulatory care utilization in hospital emergency and outpatient departments
of non-Federal, short-stay hospitals (<30 days).62 

Public use data files for the year 2000 survey were downloaded63 and processed to estimate
hospitalization counts by region.  We obtained population estimates from the 2000 U.S. Census.  The
NCHS regional groupings described above were used to estimate regional emergency room visit rates. 
Exhibit E-3 presents the estimated asthma emergency room rates by region.

Exhibit E-3.  Emergency Room Visit Rates for Asthma, by Region and Age Group

ER Category ICD-9 Code Region
ER Visit Rate 

(visits per 100 people per year)

0-18 18-64 65+

asthma 493 Northeast 0.761 0.802 0.300

Midwest 1.476 0.877 0.334

South 1.243 0.420 0.192

West 0.381 0.381 0.137

Source: We obtained ER visit counts for the year 2000 from the National Hospital Ambulatory Medical Care Survey (NHAMCS)
and population data were obtained from the 2000 U.S. Census.

E.4 Nonfatal Heart Attacks

The relationship between short-term particulate matter exposure and heart attacks was quantified in a
case-crossover analysis by Peters et al. (2001).  The study population was selected from heart attack
survivors in a medical clinic.  Therefore, the applicable population to apply to the C-R function is all
individuals surviving a heart attack in a given year.  Several data sources are available to estimate the
number of heart attacks per year.  For example, several cohort studies have reported estimates of heart
attack incidence rates in the specific populations under study.  However, these rates depend on the
specific characteristics of the populations under study and may not be the best data to extrapolate
nationally.  The American Heart Association reports approximately 540,000 new heart attacks per year
using data from a multi-center study (Haase, 2002, to be published in the American Heart Association’s
2003 Statistical Handbook).  Exclusion of heart attack deaths reported by CDC Wonder yields
approximately 330,000 nonfatal cases per year.   

An alternative approach to the estimation of heart attack rates is to use data from the National Hospital
Discharge Survey, assuming that all heart attacks that are not instantly fatal will result in a
hospitalization.  According to the National Hospital Discharge Survey, in 1999 there were approximately
829,000 hospitalizations due to heart attacks (acute myocardial infarction: ICD-9 410) (Popovic, 2001,
Table 8).  We used regional hospitalization rates over estimates extrapolated from cohort studies because
the former is part of a nationally representative survey with a larger sample size, which is intended to
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provide reliable national estimates.  As additional information is provided regarding the American Heart
Association methodology, we will evaluate the usefulness of this estimate of heart attack incidence.

Rosamond et al. (1999) reported that approximately six percent of male and eight percent of female
hospitalized heart attack patients die within 28 days (either in or outside of the hospital).  We, therefore,
applied a factor of 0.93 to the count of hospitalizations to estimate the number of nonfatal heart attacks
per year.  To estimate the rate of nonfatal heart attack, we divided the count by the population estimate
for 2000 from the U.S. Census.  Exhibit E-4 presents the regional nonfatal heart attack incidence rates.

Exhibit E-4.  Nonfatal Heart Attack Rates, by Region and Age Group

Endpoint (ICD codes) Region
Nonfatal Heart Attack Rate 

(cases per 100 people per year) a

0-18 18-64 65+

nonfatal heart attacks (ICD-9 410) Northeast 0.0000 0.2167 1.6359

Midwest 0.0003 0.1772 1.4898

South 0.0006 0.1620 1.1797

West 0.0000 0.1391 1.1971
a Rates are based on data from the 1999 National Hospital Discharge Survey (NHDS) and an estimate from Rosamond et al.
(1999) that approximately 7% of individuals hospitalized for a heart attack die within 28 days.

E.5 School Loss Days

Epidemiological studies have examined the relationship between air pollution and a variety of
measures of school absence.  These measures include: school loss days for all causes, illness-related, and
respiratory illness-related.  We have two sources of information.  The first is the National Center for
Education Statistics, which provided an estimate of all-cause school loss days, and the other is the
National Health Interview Survey (Adams et al., 1999, Table 47), which has data on different categories
of acute school loss days.  Exhibit E-5 presents the illness-related rates used in this analysis.

E.5.1 All-Cause School Loss Rates

Based on data from the U.S. Department of Education (1996, Table 42-1), the National Center for
Education Statistics estimates that for the 1993-1994 school year, 5.5 percent of students are absent from
school on a given day.  This estimate is comparable to study-specific estimates from Chen et al. (2000)
and Ransom and Pope (1992), which ranged from 4.5 to 5.1 percent.

We use the total or all-cause school absence rate in C-R functions based on studies by Chen et al.
(2000), Gilliland et al. (2001) and Ransom et al. (1992).  We also use the all-cause school absence rate as
a population adjustment in C-R functions derived from Gilliland et al. (2001), for which it is necessary to
estimate the average proportion of children attending school on a given day.  This is described in more
detail in the specific C-R function summaries.
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E.5.2 Illness-Related School Loss Rates

The National Health Interview Survey (NHIS) has regional estimates of school loss days due to a
variety of acute conditions (Adams et al., 1999).  NHIS is a nationwide sample-based survey of the health
of the noninstitutionalized, civilian population, conducted by NCHS. The survey collects data on acute
conditions, prevalence of chronic conditions, episodes of injury, activity limitations, and self-reported
health status.  However, it does not provide an estimate of all-cause school loss days.

In estimating illness-related school loss days, we started with school loss days due to acute problems
(Adams et al., 1999, Table 47) and subtracted lost days due to injuries, in order to match the definition of
the study used in the C-R function to estimate illness-related school absences (Gilliland et al., 2001).  We
then divided by 180 school days per to estimate illness-related school absence rates per school day. 
Similarly, when estimating respiratory illness-related school loss days, we use data from Adams et al.
(1999, Table 47). Note that we estimated 180 school days in a year to calculate respiratory illness-related
school absence rates per year.

Exhibit E-5.  School Loss Day Rates

Type of School Loss Day a
Absence Rate by Region 

(cases per 100 students per year)

Northeast Midwest South West

Respiratory illness-related absences 131.4 165.6 109.8 223.2

Illness-related absences 244.8 262.8 255.6 370.8

All-cause 990.0 990.0 990.0 990.0
a We based illness-related school loss day rates on data from the 1996 NHIS (Adams et al., 1999, Table 47) and an estimate of 180
school days per year.  This excludes school loss days due to injuries.  We based the all-cause school loss day rate on data from the
National Center for Education Statistics (U.S. Department of Education, 1996, Table 42-1).

E.6 Other Acute and Chronic Effects

For many of the minor effect studies, baseline rates from a single study are often the only source of
information, and we assume that these rates hold for locations in the U.S.  The use of study-specific
estimates are likely to increase the uncertainty around the estimate because they are often estimated from
a single location using a relatively small sample.  These endpoints include: acute bronchitis, chronic
bronchitis, upper respiratory symptoms, lower respiratory symptoms.  Exhibit E-6 presents a summary of
these baseline rates.  
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Exhibit E-6.  Selected Acute and Chronic Effects Rates

Endpoint Age Parameter a Rate Source

Acute Bronchitis 8-12 Incidence 4.300 (American Lung Association, 2002a,
Table 11)

Chronic Bronchitis 27+ Incidence 0.378 (Abbey et al., 1993, Table 3)

Chronic Bronchitis 18+  Prevalence 4.43%

(American Lung Association, 2002b,
Table 4)

18-44 3.67%

45-64 5.05%

65+ 5.87%

Lower Respiratory Symptoms
(LRS) 7-14 Incidence 43.8 (Schwartz et al., 1994, Table 2)

Minor Restricted Activity Days
(MRAD) 18-64 Incidence 780.0 (Ostro and Rothschild, 1989, p. 243)

Work Loss Day (WLD) 18-64 Incidence 217.2

(Adams et al., 1999, Table 41); (U.S.
Bureau of the Census, 1997, No. 22)

18-24 197.1

25-44 247.5

45-64 179.6
a The incidence rate is the number of cases per 100 people per year.  Prevalence refers to the fraction of people that have a
particular illness during a particular time period.

E.6.1 Acute Bronchitis

The annual rate of acute bronchitis for children ages 5 to 17 was obtained from the American Lung
Association (2002a, Table 11).  The authors reported an annual incidence rate per person of 0.043,
derived from the 1996 National Health Interview Survey.

E.6.2 Chronic Bronchitis Incidence Rate

The annual incidence rate for chronic bronchitis is estimated from data reported by Abbey et al.(1993,
Table 3).  The rate is calculated by taking the number of new cases (234), dividing by the number of
individuals in the sample (3,310), dividing by the ten years covered in the sample, and then multiplying
by one minus the reversal rate (estimated to be 46.6% based on Abbey et al. (1995a, Table 1)).  We then
multiplied this result by 100 to calculate an annual incidence rate per 100 people of 0.378.

Age-specific incidence rates are not available.  Abbey et al. (1995a, Table 1) did report the incidences
by three age groups (25-54, 55-74, and 75+) for “cough type” and “sputum type” bronchitis.  However,
they did not report an overall incidence rate for bronchitis by age-group.  Since, the cough and sputum
types of bronchitis overlap to an unknown extent, we did not attempt to generate age-specific incidence
rates for the over-all rate of bronchitis.



64   For example, the 62.5th percentile would have an estimated incidence rate per person per day of 0.145 percent.
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E.6.3 Chronic Bronchitis Prevalence Rate

We obtained the annual prevalence rate for chronic bronchitis from the American Lung Association
(2002b, Table 4).  Based on an analysis of 1999 National Health Interview Survey data, they estimated a
rate of 0.0443 for persons 18 and older, they also reported the following prevalence rates for people in the
age groups 18-44, 45-64, and 65+: 0.0367, 0.0505, and 0.0587, respectively.

E.6.4 Lower Respiratory Symptoms

 Lower respiratory symptoms (LRS) are defined as two or more of the following: cough, chest pain,
phlegm, wheeze.  The proposed yearly incidence rate for 100 people, 43.8, is based on the percentiles in
Schwartz et al. (Schwartz et al., 1994, Table 2).  The authors did not report the mean incidence rate, but
rather reported various percentiles from the incidence rate distribution.  The percentiles and associated per
person per day values are 10th = 0 percent, 25th = 0 percent, 50th = 0 percent, 75th = 0.29 percent, and 90th

= 0.34 percent.  The most conservative estimate consistent with the data are to assume the incidence per
person per day is zero up to the 75th percentile, a constant 0.29 percent between the 75th and 90th

percentiles, and a constant 0.34 percent between the 90th and 100th percentiles.  Alternatively, assuming a
linear slope between the 50th and 75th, 75th and 90th, and 90th to 100th percentiles, the estimated mean
incidence rate per person per day is 0.12 percent.64  We used the latter approach in this analysis, and then
multiplied by 100 and by 365 to calculate the incidence rate per 100 people per year.

E.6.5 Minor Restricted Activity Days (MRAD)

Ostro and Rothschild (1989, p. 243) provide an estimate of the annual incidence rate of MRADs (7.8). 
We multiplied this estimate by 100 to get an annual rate per 100 people.

E.6.6 Work Loss Days

The yearly work-loss-day incidence rate per 100 people is based on estimates from the 1996 National
Health Interview Survey (Adams et al., 1999, Table 41).  They reported a total annual work loss days of
352 million for individuals ages 18 to 65.  The total population of individuals of this age group in 1996
(162 million) was obtained from (U.S. Bureau of the Census, 1997, No. 22).  The average annual rate of
work loss days per individual (2.17) was multiplied by 100 to obtain the average yearly work-loss-day
rate of 217 per 100 people.  Using a similar approach, we calculated work-loss-day rates for ages 18-24,
25-44, and 45-64, respectively.

E.7 Asthma-Related Health Effects

Several studies have examined the impact of air pollution on asthma development or exacerbation. 
Many of the baseline incidence rates used in the C-R functions are based on study-specific estimates.  The
baseline rates for the various endpoints are described below and summarized in Exhibit E-7.
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Exhibit E-7.  Asthma-Related Health Effects Rates

Endpoint Age Parameter a Rate Source

Acute Bronchitis 9-15 Incidence 32.6 (McConnell et al., 1999, Table 2)

Asthma Attacks 18+ Incidence 2008 1999 National Health Interview Survey

Asthma Exacerbation, Shortness of
Breath, African American

8-13 Incidence 1351
(Ostro et al., 2001, p.202)

8-13 Prevalence 7.40%

Asthma Exacerbation, Wheeze,
African American

8-13 Incidence 2774
(Ostro et al., 2001, p.202)

8-13 Prevalence 17.30%

Asthma Exacerbation, Cough, African
American

8-13 Incidence 2446
(Ostro et al., 2001, p.202)

8-13 Prevalence 14.50%

Asthma Exacerbation, Cough 6-13 Incidence 3139 (Vedal et al., 1998, Table 1 p. 1038)

Asthma Exacerbation, One or more
symptoms 5-13 Incidence 21900 (Yu et al., 2000, Table 2 p. 1212)

Chronic Asthma, Male 27+ Incidence 0.219 (McDonnell et al., 1999, Table 4)

Phlegm 9-15 Incidence 25.7 (McConnell et al., 1999, Table 2)

Upper Respiratory Symptoms (URS)2 9-11 Incidence 12479 (Pope et al., 1991, Table 2)
a The incidence rate is the number of cases per 100 people per year.  Prevalence refers to the fraction of people that have a
particular illness during a particular time period.

E.7.1 Asthma Attacks

The annual rate of asthma attacks among asthmatics is estimated from the 1999 National Health
Interview Survey.  Individuals with asthma were asked about the number of wheezing attacks per year. 
The average number of wheezing attacks per year was multiplied by 100 to obtain a wheezing attack rate
per year per 100 people for individuals 18 and older.  We assume that this rate of wheezing attacks can be
used as a surrogate for asthma attacks.   

Note that the same survey examined wheezing attacks for children.  However, the number of wheezing
attacks per year were censored at 12 (compared to censoring at 95 for adults).  Due to the potential for
underestimation of the number of children’s wheezing attacks, we used the adult rate for all individuals.    

E.7.2 Asthma Exacerbation

There are a variety of types of symptoms for asthma exacerbation.  We calculated rates for shortness
of breath, wheeze, cough, and other asthma related effects.

E.7.3 Shortness of Breath

To estimate the annual rate of new shortness of breath episodes among African-American asthmatics,
ages 8-13, we used the rate reported by Ostro et al. (2001, p.202).  We estimated the daily prevalence of
shortness of breath episodes among African-American asthmatics, ages 8-13, by taking a weighted
average of the reported rates in Ostro et al. (2001, p.202).

E.7.4 Wheeze
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The daily rate of new wheeze episodes among African-American asthmatics, ages 8-13, is reported by
Ostro et al. (2001, p.202) as 0.076.  We multiplied this value by 100 and by 365 to get the annual
incidence rate per 100 people.  The daily rate of prevalent wheeze episodes (0.173) among African-
American asthmatics, ages 8-13, is estimated by taking a weighted average of the reported rates in Ostro
et al. (2001, p.202).

E.7.5 Cough

The daily rate of new cough episodes among African-American asthmatics, ages 8-13, is reported by
Ostro et al. (2001, p.202) as 0.067.  We multiplied this value by 100 and by 365 to get the annual
incidence rate per 100 people.  The daily rate of prevalent cough episodes (0.145) among African-
American asthmatics, ages 8-13, is estimated by taking a weighted average of the reported rates in Ostro
et al. (2001, p.202).

E.7.6 One or More Symptoms

Yu et al. (2000, Table 2, p. 1212) reported a daily rate of at least one asthma episode per asthmatic
child ages 5-13.  An asthma episode is defined as at least one of the following asthma symptoms:
wheezing, coughing, chest tightness, or shortness of breath.

E.7.7 Chronic Asthma 

We derived the annual incidence rate per 100 people by taking the number of new cases (32), dividing
by the number of individuals in the sample (972), as reported by (McDonnell et al., 1999, Table 4), and
then dividing by the 15 years in the sample.  We then multiplied by 100 to get the annual incidence rate
per 100 people.

E.7.8 Upper Respiratory Symptoms

Upper Respiratory Symptoms are defined as one or more of the following: runny or stuffy nose; wet
cough; burning, aching, or red eyes.   Using the incidence rates for upper respiratory symptoms among
asthmatics, published in Pope et al. (1991, Table 2), we calculated a sample size-weighted average
incidence rate.

E.7.9 Asthma Population Estimates 

In studies examining the association between air pollution and the development or exacerbation of
asthma, often times an estimate of the percent of the population with asthma is required.  Asthma
percentages were obtained either directly from the National Health Interview Survey (NHIS) or an
American Lung Association  (2002c) report summarizing data from NHIS.  Exhibit E-8 presents asthma
prevalence rates used define asthmatic populations in the C-R functions.
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Exhibit E-8.  Asthma Prevalence Rates Used to Estimate Asthmatic Populations

Population Group Prevalence Source

All Ages 3.86%

American Lung Association (2002c, Table 7) a

<18 5.27%

5-17 5.67%

18-44 3.71%

45-64 3.33%

65+ 2.21%

African-American, 5 to 17 7.26%
American Lung Association (2002c, Table 9) a

African-American, <18 7.35%

Male, 27+ 2.10% 2000 NHIS public use data files b

a The work by the American Lung Association is based on the 1999 National Health Interview Survey.
b See ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHIS/2000/
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Appendix F:  Particulate Matter Concentration-Response Functions

In this Appendix, we present the concentration-response (C-R) functions used to estimate PM-related
adverse health effects.  Each sub-section has an Exhibit with a brief description of the C-R function and
the underlying parameters.  Following each Exhibit, we present a brief summary of each of the studies
and any items that are unique to the study.

Note that the main text describes the methods that we used to choose these C-R functions from the
wide range available in the literature.  In addition, Appendix D mathematically derives the standard types
of C-R functions that we encountered in the epidemiological literature, such as, log-linear, logistic and
linear, so we simply note here the type of functional form.  Finally, Appendix E presents a description of
the sources for the incidence and prevalence data used in these C-R functions.
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Exhibit F-1.  Concentration-Response (C-R) Functions for Particulate Matter and Long-Term Mortality

Endpoint Name Pollutant Author Year Location Age Race Gender Other
Pollutants

Averaging
Time Beta Std Error Functional

Form Notes

All Cause PM2.5 Krewski et al. 2000 63 cities 30+ All All None Annual Avg 0.004626 0.001205 Log-linear ACS reanalysis

All Cause PM2.5 Krewski et al. 2000 50 cities 30+ All All None Annual Median 0.005348 0.001464 Log-linear ACS reanalysis

All Cause PM2.5 Krewski et al. 2000 nationwide 30+ All All None Annual Median 0.010394 0.002902 Log-linear ACS reanalysis; RE
Ind Cities

All Cause PM2.5 Krewski et al. 2000 nationwide 30+ All All None Annual Median 0.006058 0.003383 Log-linear ACS reanalysis; RE
Reg Adj

All Cause PM2.5 Krewski et al. 2000 6 cities 25+ All All None Annual Avg 0.013272 0.004070 Log-linear Six Cities reanalysis

All Cause PM2.5 Pope et al. 1995 50 cities 30+ All All None Annual Median 0.006408 0.001509 Log-linear

All Cause PM2.5 Dockery et al. 1993 6 cities 25+ All All None Annual Avg 0.012425 0.004228 Log-linear

All Cause PM2.5 Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.004018 0.001642 Log-linear '79-'83 exposure

Cardiopulmonary PM2.5 Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.005733 0.002167 Log-linear '79-'83 exposure

Lung Cancer PM2.5 Pope et al. 2002 61 cities 30+ All All None Annual Avg 0.007881 0.003463 Log-linear '79-'83 exposure

Infant PM10
Woodruff et
al. 1997 86 cities <1 All All None Annual Avg 0.003922 0.001221 Logistic



65  The total study population was 552,138 in 151 cities, however, only 295,223 individuals resided in 50 cities with fine particle
data.

66  All-cause mortality includes accidents, suicides, homicides and legal interventions.  The category “all other” deaths is all-cause
mortality less lung cancer and cardiopulmonary deaths.
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F.1 Long-term Mortality

There are two types of exposure to PM that may result in premature mortality.  Short-term exposure
may result in excess mortality on the same day or within a few days of exposure.  Long-term exposure
over, say, a year or more, may result in mortality in excess of what it would be if PM levels were
generally lower, although the excess mortality that occurs will not necessarily be associated with any
particular episode of elevated air pollution levels.  In other words, long-term exposure may capture a facet
of the association between PM and mortality that is not captured by short-term exposure.

F.1.1 Mortality - Mean, All Cause (Krewski et al., 2000) - Reanalysis of Pope et al. (1995)

The Krewski et al. (2000) reanalysis of Pope et al. (1995) used a Cox proportional hazard model to
estimate the impact of long-term PM exposure.  The original investigation followed 295,223 individuals65

ages 30 and over in 50 cities from September 1, 1982 to December 31, 1989, and related their survival to
median PM2.5 concentrations for 1979 to 1983.  Krewski et al. (2000) independently estimated city-
specific annual mean values from EPA’s Inhalable Particle Monitoring Network (IPMN) for the same
years (1979-1983).  Krewski et al. (2000) followed Pope et al. (1995, Table 2) and reported results for all-
cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and 460-
519), and “all other” deaths,66 and found that mean PM2.5 is significantly related to all-cause and
cardiopulmonary mortality.  Krewski et al. included only PM, so it is unclear to what extent it may be
including the impacts of ozone or other gaseous pollutants.

Pope et al. (1995) is the better of the two published prospective cohort studies: it has a larger
population and includes more cities than the prospective cohort study by Dockery et al. (1993).  Pope et
al.’s study has several further advantages.  The population followed in this study was largely Caucasian
and middle class, decreasing the likelihood that interlocational differences in premature mortality were
due in part to differences in race, socioeconomic status, or related factors.  In addition, the PM coefficient
in Pope et al. is likely to be biased downward, counteracting a possible upward bias associated with
historical air quality trends discussed earlier.  One source of this downward bias is the generally healthier
and study population, in comparison to poorer minority populations.  Krewski et al. (2000, Part II - Table
52) found that educational status was a strong effect modifier of the PM - mortality relationship in both
studies, with the strongest effect seen among the less educated.  In fact, much of the differences in
magnitude of effect between the studies was made up when assessing risk across comparable levels of
educational attainment.

Another source of downward bias is that intercity movement of cohort members was not considered in
the original study and therefore could not be evaluated in the reanalysis.  Migration across study cities
would result in exposures of cohort members being more similar than would be indicated by assigning
city-specific annual average pollution levels to each member of the cohort.  The more intercity migration
there is, the more exposure will tend toward an intercity mean.  If this is ignored, differences in exposure
levels, that are proxied by differences in city-specific annual average PM levels, will be exaggerated, and
will result in a downward bias of the PM coefficient (because a given difference in mortality rates is being
associated with a larger difference in PM levels than is actually the case).  
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Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.12) and 95% confidence
interval (1.06-1.19) associated with a change in annual mean PM2.5 exposure of 24.5 :g/m3 (based on the
range from the original ACS study) (Krewski et al., 2000, Part II - Table 31).

Functional Form: Log-linear
Coefficient: 0.004626
Standard Error: 0.001205
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

F.1.2 Mortality - Median, All Cause (Krewski et al., 2000) - Reanalysis of Pope et al. (1995)

Krewski et al. (2000) performed an analysis of Pope et al. (2000) using independently estimated city-
specific annual median values as well.  Fine particle estimates were obtained from EPA’s Inhalable
Particle Monitoring Network (IPMN) for the years 1979-1983 for the same 50 cities.  Overall, the
estimates showed good agreement with the median values used in the original investigation with one
exception.  The median fine particle concentration for Denver dropped from 16.1 to 7.8 :g/m3, resulting
in a larger range between the least and most polluted cities and a reduced relative risk.  Since the original
estimate could not be audited, Denver is included in the subsequent C-R function as there is no reason to
believe that the monitoring data is invalid.

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.14) and 95% confidence
interval (1.06-1.22) associated with a change in annual median PM2.5 exposure of 24.5 :g/m3 (based on
the range from the original ACS study) (Krewski et al., 2000, Part II - Table 31).

Functional Form: Log-linear
Coefficient: 0.005348
Standard Error: 0.001464
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

F.1.3 Mortality - Median, Random Effects with Regional Adjustment (Krewski et al., 2000) -
Reanalysis of Pope et al. (1995)

Krewski et al. (2000) also performed an analysis of Pope et al. (2000) using 
a random effects model to estimate a regionally-adjusted relative risk.  The authors used an indicator
variable representing seven regions of the U.S.  The regionally-adjusted estimate was comparable with the
results from the standard Cox Proportional Hazards Model, which assumes that all observations are
statistically independent.   

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.16) and 95% confidence
interval (0.99-1.37) associated with a change in annual median PM2.5 exposure of 24.5 :g/m3 (based on
the range from the original ACS study) (Krewski et al., 2000, Part II - Table 46).
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Functional Form: Log-linear
Coefficient: 0.006058
Standard Error: 0.003383
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

F.1.4 Mortality - Median, Random Effects with Independent Cities (Krewski et al., 2000) -
Reanalysis of Pope et al. (1995)

Krewski et al. (2000) also performed an analysis of Pope et al. (2000) using a random effects approach
to estimate an independent cities model.  This approach incorporates between-city variation into second-
stage modeling weights, thereby avoiding the assumption of independent observations.  However,
potential regional patterns in mortality may be overlooked, because the approach assumes that city-
specific mortality rates are statistically independent.  The independent cities estimate is considerably
larger than the standard Cox Proportional Hazards Model, which assumes that all observations are
statistically independent.   

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.29) and 95% confidence
interval (1.12-1.48) associated with a change in annual median PM2.5 exposure of 24.5 :g/m3 (based on
the range from the original ACS study) (Krewski et al., 2000, Part II - Table 46).

Functional Form: Log-linear
Coefficient: 0.010394
Standard Error: 0.002902
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

F.1.5 Mortality  (Krewski et al., 2000) - Reanalysis of Dockery et al. (1993)

Krewski et al. (2000) performed a validation and replication analysis of Dockery et al. (1993).  The
original investigators examined the relationship between PM exposure and mortality in a cohort of 8,111
individuals aged 25 and older, living in six U.S. cities.  They surveyed these individuals in 1974-1977 and
followed their health status until 1991.  While they used a smaller sample of individuals from fewer cities
than the study by Pope et al., they used improved exposure estimates, a slightly broader study population
(adults aged 25 and older; a higher proportion without a high school education), and a follow-up period
nearly twice as long as that of Pope et al. (1995).  Krewski et al. (2000, Part II - Table 52) found that
educational status was a strong effect modifier of the PM - mortality relationship in both studies, with the
strongest effect seen among the less educated.  Perhaps because of these differences, Dockery et al. study
found a larger effect of PM on premature mortality than that found by Pope et al.

After an audit of the air pollution data, demographic variables, and cohort selection process, Krewski
et al. (2000) noted that a small portion of study participants were mistakenly censored early.  The
following C-R function is based on the risk estimate from the audited data, with the inclusion of those
person-years mistakenly censored early. 

Single Pollutant Model



67  The total study population was 552,138 in 151 cities, however, only 295,223 individuals resided in 50 cities with fine particle
data.

68  All-cause mortality includes accidents, suicides, homicides and legal interventions.  The category “all other” deaths is all-cause
mortality less lung cancer and cardiopulmonary deaths.
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The coefficient and standard error are estimated from the relative risk (1.28) and 95% confidence
interval (1.10-1.48) associated with a change in annual mean PM2.5 exposure of 18.6 :g/m3 to 29.6 :g/m3

(Krewski et al., 2000, Part I - Table 19c).    

Functional Form: Log-linear
Coefficient: 0.013272
Standard Error: 0.004070
Incidence Rate: county-specific annual all cause mortality rate per person ages 25 and older
Population: population of ages 25 and older

F.1.6 Mortality, All Cause (Pope et al., 1995)

Pope et al. (1995) used a Cox proportional hazard model to estimate the impact of long-term PM
exposure.  They followed 295,223 individuals67 ages 30 and over in 50 cities from September 1, 1982 to
December 31, 1989, and related their survival to median PM2.5 concentrations for 1979 to 1983.  Pope et
al. (1995, Table 2) reported results for all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary
deaths (ICD-9 codes: 401-440 and 460-519), and “all other” deaths,68 and found that median PM2.5 is
significantly related to all-cause and cardiopulmonary mortality.  Pope et al. included only PM, so it is
unclear to what extent it may be including the impacts of ozone or other gaseous pollutants.

Pope et al. (1995) is the better of the two published prospective cohort studies: it has a larger
population and includes more cities than the prospective cohort study by Dockery et al. (1993).  Pope et
al.’s study has several further advantages.  The population followed in this study was largely Caucasian
and middle class, decreasing the likelihood that interlocational differences in premature mortality were
due in part to differences in race, socioeconomic status, or related factors.  In addition, the PM coefficient
in Pope et al. is likely to be biased downward, counteracting a possible upward bias associated with
historical air quality trends discussed earlier.  One source of this downward bias is the generally healthier
study population, in comparison to poorer minority populations.  Another source of downward bias is that
intercity movement of cohort members was not considered in this study.  Migration across study cities
would result in exposures of cohort members being more similar than would be indicated by assigning
city-specific annual average pollution levels to each member of the cohort.  The more intercity migration
there is, the more exposure will tend toward an intercity mean.  If this is ignored, differences in exposure
levels, that are proxied by differences in city-specific annual average PM levels, will be exaggerated, and
will result in a downward bias of the PM coefficient (because a given difference in mortality rates is being
associated with a larger difference in PM levels than is actually the case).  

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.17) and 95% confidence
interval (1.09-1.26) associated with a change in annual median PM2.5 exposure of 24.5 :g/m3 (Pope et al.,
1995, Table 2).
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Functional Form: Log-linear
Coefficient: 0.006408
Standard Error: 0.001509
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

F.1.7 Mortality, All Cause (Dockery et al., 1993)

Dockery et al. (1993) examined the relationship between PM exposure and mortality in a cohort of
8,111 individuals aged 25 and older, living in six U.S. cities.  They surveyed these individuals in 1974-
1977 and followed their health status until 1991.  While they used a smaller sample of individuals from
fewer cities than the study by Pope et al., they used improved exposure estimates, a slightly broader study
population (adults aged 25 and older), and a follow-up period nearly twice as long as that of Pope et al.
(1995).  Perhaps because of these differences, Dockery et al. study found a larger effect of PM on
premature mortality than that found by Pope et al.

Single Pollutant Model

The coefficient and standard error are estimated from the relative risk (1.26) and 95% confidence
interval associated (1.08-1.47) with a change in annual mean PM2.5 exposure of 18.6 :g/m3 (Dockery et
al., 1993, Tables 1 and 5).

Functional Form: Log-linear
Coefficient: 0.012425
Standard Error: 0.004228
Incidence Rate: county-specific annual all cause mortality rate per person ages 25 and older
Population: population of ages 25 and older

F.1.8 Mortality, All Cause (Pope et al., 2002) - Based on ACS Cohort: Mean PM2.5

The Pope et al. (2002) analysis is a longitudinal cohort tracking study that uses the same American
Cancer Society (ACS) cohort as the original Pope et al. (1995) study, and  the Krewski et al. (2000)
reanalysis.  Pope et al. (2002) analyzed survival data for the cohort from 1982 through 1998, 9 years
longer than the original Pope study.  Pope et al. (2002) also obtained PM2.5 data in 116 metropolitan areas
collected in 1999, and the first three quarters of 2000.  This is more metropolitan areas with PM2.5 data
than was available in the Krewski reanalysis (61 areas), or the original Pope study (50 areas), providing a
larger size cohort.

They used a Cox proportional hazard model to estimate the impact of long-term PM exposure using
three alternative measures of PM2.5 exposure; metropolitan area-wide annual mean PM levels from the
beginning of tracking period (’79-’83 PM data, conducted for 61 metropolitan areas with 359,000
individuals), annual mean PM from the end of the tracking period (’99-’00, for 116 areas with 500,000
individuals), and the average annual mean PM levels of the two periods (for 51 metropolitan areas, with
319,000 individuals).  PM levels were lower in ’99-00 than in ’79 - ’83 in most cities, with the largest
improvements occurring in cities with the highest original levels.

Pope et al.  (2002) followed Krewski et al. (2000) and Pope et al. (1995, Table 2) and reported results
for all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and



69  All-cause mortality includes accidents, suicides, homicides and legal interventions.  The category “all other” deaths is all-cause
mortality less lung cancer and cardiopulmonary deaths.

70  Note that we used an unpublished, final version of the paper that presents the relative risks with one more significant digit than
that found in the published version.  We chose to use this extra information to increase the precision of our estimates. 

71  All-cause mortality includes accidents, suicides, homicides and legal interventions.  The category “all other” deaths is all-cause
mortality less lung cancer and cardiopulmonary deaths.

72  Note that we used an unpublished, final version of the paper that presents the relative risks with one more significant digit than
that found in the published version.  We chose to use this extra information to increase the precision of our estimates. 
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460-519), and “all other” deaths.69  Like the earlier studies, Pope et al. (2002) found that mean PM2.5 is
significantly related to all-cause and cardiopulmonary mortality.  In addition, Pope et al. (2002) found a
significant relationship with lung cancer mortality, which was not found in the earlier studies.  None of
the three studies found a significant relationship with “all other” deaths.

Pope et al. (2002) obtained ambient data on gaseous pollutants routinely monitored by EPA during the
1982-1998 observation period, including SO2, NO2, CO, and ozone.  They did not find significant
relationships between NO2, CO, and ozone and premature mortality, but there were significant
relationships between SO2, and all-cause, cardiopulmonary, lung cancer and “all other” mortality.

’79-’83 Exposure

The coefficient and standard error for PM2.5 using the ’79-’83 PM data are estimated from the relative
risk (1.041) and 95% confidence interval (1.008-1.075) associated with a change in annual mean
exposure of 10.0 :g/m3. Pope et al. (2002, Table 2).70 

Functional Form: Log-linear
Coefficient: 0.004018
Standard Error: 0.001642
Incidence Rate: county-specific annual all cause mortality rate per person ages 30 and older
Population: population of ages 30 and older

F.1.9 Mortality, Cardiopulmonary (Pope et al., 2002) - Based on ACS Cohort: Mean PM2.5

Pope et al.  (2002) followed Krewski et al. (2000) and Pope et al. (1995, Table 2) and reported results
for all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and
460-519), and “all other” deaths.71  Like the earlier studies, Pope et al. (2002) found that mean PM2.5 is
significantly related to all-cause and cardiopulmonary mortality.  In addition, Pope et al. (2002) found a
significant relationship with lung cancer mortality, which was not found in the earlier studies.  None of
the three studies found a significant relationship with “all other” deaths.

’79-’83 Exposure

The coefficient and standard error for PM2.5 using the ’79-’83 PM data are estimated from the relative
risk (1.059) and 95% confidence interval (1.015-1.105) associated with a change in annual mean
exposure of 10.0 :g/m3. Pope et al. (2002, Table 2).72 

Functional Form: Log-linear



73  All-cause mortality includes accidents, suicides, homicides and legal interventions.  The category “all other” deaths is all-cause
mortality less lung cancer and cardiopulmonary deaths.

74  Note that we used an unpublished, final version of the paper that presents the relative risks with one more significant digit than
that found in the published version.  We chose to use this extra information to increase the precision of our estimates. 

Abt Associates Inc. April 2003F-9

Coefficient: 0.005733
Standard Error: 0.002167
Incidence Rate: county-specific annual cardiopulmonary mortality rate (ICD codes 401-440, 460-519)
per person ages 30 and older
Population: population of ages 30 and older

F.1.10 Mortality, Lung Cancer (Pope et al., 2002) - Based on ACS Cohort: Mean PM2.5

Pope et al.  (2002) followed Krewski et al. (2000) and Pope et al. (1995, Table 2) and reported results
for all-cause deaths, lung cancer (ICD-9 code: 162), cardiopulmonary deaths (ICD-9 codes: 401-440 and
460-519), and “all other” deaths.73  Like the earlier studies, Pope et al. (2002) found that mean PM2.5 is
significantly related to all-cause and cardiopulmonary mortality.  In addition, Pope et al. (2002) found a
significant relationship with lung cancer mortality, which was not found in the earlier studies.  None of
the three studies found a significant relationship with “all other” deaths.

’79-’83 Exposure

The coefficient and standard error for PM2.5 using the ’79-’83 PM data are estimated from the relative
risk (1.082) and 95% confidence interval (1.011-1.158) associated with a change in annual mean
exposure of 10.0 :g/m3. Pope et al. (2002, Table 2).74 

Functional Form: Log-linear
Coefficient: 0.007881
Standard Error: 0.003463
Incidence Rate: county-specific annual lung cancer mortality rate (ICD code 162) per person ages 30 and
older
Population: population of ages 30 and older

F.1.11 Infant Mortality (Woodruff et al., 1997)

In a study of four million infants in 86 U.S. metropolitan areas conducted from 1989 to 1991,
Woodruff et al. (1997) found a significant link between PM10 exposure in the first two months of an
infant’s life with the probability of dying between the ages of 28 days and 364 days.  PM10 exposure was
significant for all-cause mortality.  PM10 was also significant for respiratory mortality in average birth-
weight infants, but not low birth-weight infants.

In addition to the work by Woodruff et al., work in Mexico City (Loomis et al., 1999), the Czech
Republic (Bobak and Leon, 1992), Sao Paulo (Saldiva et al., 1994; Pereira et al., 1998), and Beijing
(Wang et al., 1997) provides additional evidence that particulate levels are significantly related to infant
or child mortality, low birth weight or intrauterine mortality.



75   Predicted neonatal mortality could not be added to the premature mortality predicted by the daily (short-term exposure) mortality
studies, however, because these studies cover all ages.  

76  Post-neonatal refers to infants that are 28 days to 364 days old.
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Conceptually, neonatal or child  mortality could be added to the premature mortality predicted by
Pope et al. (1995), because the Pope function covers only the population over 30 years old.75  However,
the EPA Science Advisory Board recently advised the Agency not to include post-neonatal mortality in
this analysis because the study is of a new endpoint and the results have not been replicated in other
studies (U.S. EPA, 1999a, p.  12).  The estimated avoided incidences of neonatal mortality are estimated
and presented as a sensitivity analysis, and are not included in the base analysis.

Single Pollutant Model

The coefficient and standard error are based on the odds ratio (1.04) and 95% confidence interval
(1.02-1.07) associated with a 10 :g/m3 change in PM10 (Woodruff et al., 1997, Table 3). 

Functional Form: Logistic
Coefficient: 0.003922
Standard Error: 0.001221
Incidence Rate: county-specific annual postneonatal76 infant deaths per infant under the age of one
Population: population of infants under one year old
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Exhibit F-2.  Concentration-Response (C-R) Functions for Particulate Matter and Short-Term Mortality

Endpoint Name Pollutant Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1 Beta Std

Error
Functional

Form Notes

Non-Accidental PM2.5 Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.001433 0.00013 Log-linear

Non-Accidental PM2.5 Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.002835 -- Log-linear Lag Adjusted2

Chronic Lung PM2.5 Schwartz et al. 1996 6 cities All All All None 24-hr avg 0.006423 -- Log-linear Lag Adjusted2

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
2.  Refer to the study summaries below for a discussion of the lag adjustment used for these functions.



77  Schwartz et al. (1996, p. 929) defined non-accidental mortality as all-cause mortality less deaths due to accidents and other
external causes (ICD-9 codes: 800-999).  Other external causes includes suicide, homicide, and legal intervention (National Center
for Health Statistics, 1994).

78  Schwartz et al. (1996, p. 929) defined non-accidental mortality as all-cause mortality less deaths due to accidents and other
external causes (ICD-9 codes: 800-999).  Other external causes includes suicide, homicide, and legal intervention (National Center
for Health Statistics, 1994).
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F.2 Short-term Mortality

Short-term mortality studies are those that typically link daily air pollution levels with daily changes in
mortality rates.

F.2.1 Short-Term Mortality, Non-Accidental (Schwartz et al., 1996)

Schwartz et al. (1996) pooled the results from six cities in the U.S. and found a significant relationship
between daily PM2.5 concentration and non-accidental mortality.77  Abt Associates Inc. (1996b, p. 52)
used the six PM2.5 relative risks reported by Schwartz et al. in a three-step procedure to estimate a pooled
PM2.5 coefficient and its standard error.  The first step estimates a random-effects pooled estimate of $;
the second step uses an “empirical Bayes” procedure to reestimate the $ for each study as a weighted
average of the $ reported for that location and the random effects pooled estimate; the third step estimates
the underlying distribution of $, and uses a Monte Carlo procedure to estimate the standard error (Abt
Associates Inc., 1996a, p. 65).

Single Pollutant Model

Abt Associates Inc. (1996b, p. 52) used the six PM2.5 relative risks reported by Schwartz et al. in a
three-step procedure to estimate a pooled PM2.5 coefficient (Abt Associates Inc., 1996a, Exhibit 7.2) and
its standard error (Abt Associates Inc., 1996a, Exhibit 7.2).  

Functional Form: Log-linear
Coefficient: 0.001433
Standard Error: 0.000129
Incidence Rate: county-specific annual daily non-accidental mortality rate (ICD codes <800) per person 
Population: population of all ages

F.2.2 Short-Term Mortality, Non-Accidental - Lag Adjusted (Schwartz et al., 1996)

Schwartz et al. (1996) pooled the results from six cities in the U.S. and found a significant relationship
between daily PM2.5 concentration and non-accidental mortality.78  Abt Associates Inc. (1996b, p. 52)
used the six PM2.5 relative risks reported by Schwartz et al. in a three-step procedure to estimate a pooled
PM2.5 coefficient and its standard error.  The first step estimates a random-effects pooled estimate of $;
the second step uses an “empirical Bayes” procedure to reestimate the $ for each study as a weighted
average of the $ reported for that location and the random effects pooled estimate; the third step estimates
the underlying distribution of $, and uses a Monte Carlo procedure to estimate the standard error (Abt
Associates Inc., 1996a, p. 65).  In order to estimate the impact of daily PM2.5 levels on daily mortality if a
distributed lag model had been fit, the PM2.5 coefficient is adjusted as described below.



79   The distributed lag adjustment C-R function is only run for the point estimate.  The standard error of this coefficient has not been
estimated.
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Recent studies have found that an increase in PM levels on a given day can elevate mortality for
several days following the exposure (Samet et al., 2000; Schwartz, 2000b).  These studies have reported
the results of distributed lag models for the relationship between PM10 and daily mortality.  Schwartz
(2000b) examined the relationship between PM10 and daily mortality and reported results both for a single
day lag model and an unconstrained distributed lag model.  The unconstrained distributed lag model
coefficient estimate is 0.0012818 and the single-lag model coefficient estimate is 0.0006479. A
distributed lag adjustment factor can be constructed as the ratio of the estimated coefficient from the
unconstrained distributed lag model to the estimated coefficient from the single-lag model reported in
Schwartz (2000).  The ratio of these estimates is 1.9784.  In order to estimate the full impact of daily PM
levels on daily mortality, we applied this ratio to the coefficient obtained from Schwartz et al. (1996) for
the association between PM2.5 and daily mortality. 

In applying the ratio derived from a PM10 study to PM2.5, we assume that the same relationship
between the distributed lag and single day estimates would hold for PM2.5.  Effect estimates for the PM10-
daily mortality relationship tend to be lower in magnitude than for PM2.5, because fine particles are
believed to be more closely associated with mortality than the coarse fraction of PM.  If most of the
increase in mortality is expected to be associated with the fine fraction of PM10, then it is reasonable to
assume that the same proportional increase in risk would be observed if a distributed lag model were
applied to the PM2.5 data. 

Single Pollutant Model

The distributed lag model coefficient is estimated by applying the distributed lag adjustment factor of
1.9784 to the pooled PM2.5 coefficient (0.001433) estimated by Abt Associates Inc. (1996a, Exhibit 7.2)
from the six PM2.5 relative risks reported by Schwartz et al. (1996).79

Functional Form: Log-linear
Coefficient: 0.002835
Incidence Rate: county-specific annual daily non-accidental mortality rate (ICD codes <800) per person 
Population: population of all ages

F.2.3 Short-Term Mortality, Chronic Lung Disease - Lag Adjusted (Schwartz et al., 1996)

Schwartz et al. (1996) evaluated the relationship between daily PM2.5 levels and short-term mortality
in six U.S. cities.  Schwartz pooled results across the six cities and found statistically significant
associations between daily PM2.5 levels and non-accidental mortality (ICD codes <800), along with
mortality for ischemic heart disease (ICD codes 410-414), COPD (ICD codes 490-496), and pneumonia
(ICD codes 480-486).  A smaller association was found for PM10 and no significant associations were
reported for PM10-2.5.  The C-R function for chronic lung disease mortality is based on the results of a
single pollutant model using a two-day average of PM2.5 (Schwartz et al., 1996, Table 7).  In order to
estimate the impact of daily PM2.5 levels on daily mortality if a distributed lag model had been fit, the
PM2.5 coefficient is adjusted as described below.

Recent studies have found that an increase in PM levels on a given day can elevate mortality for
several days following the exposure (Samet et al., 2000; Schwartz, 2000b).  These studies have reported
the results of distributed lag models for the relationship between PM10 and daily mortality.  Schwartz
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(2000b) examined the relationship between PM10 and daily mortality and reported results both for a single
day lag model and an unconstrained distributed lag model.  The unconstrained distributed lag model
coefficient estimate is 0.0012818 and the single-lag model coefficient estimate is 0.0006479. A
distributed lag adjustment factor can be constructed as the ratio of the estimated coefficient from the
unconstrained distributed lag model to the estimated coefficient from the single-lag model reported in
Schwartz (2000).  The ratio of these estimates is 1.9784.  In order to estimate the full impact of daily PM
levels on daily mortality, we applied this ratio to the coefficient obtained from Schwartz et al. (1996) for
the association between PM2.5 and daily mortality. 

In applying the ratio derived from a PM10 study to PM2.5, we assume that the same relationship
between the distributed lag and single day estimates would hold for PM2.5.  Effect estimates for the PM10-
daily mortality relationship tend to be lower in magnitude than for PM2.5, because fine particles are
believed to be more closely associated with mortality than the coarse fraction of PM.  If most of the
increase in mortality is expected to be associated with the fine fraction of PM10, then it is reasonable to
assume that the same proportional increase in risk would be observed if a distributed lag model were
applied to the PM2.5 data. 

Single Pollutant Model

The PM2.5 coefficient is based on a reported 3.3% increase in COPD mortality associated with a 10
:g/m3 change in two-day average PM2.5 levels (Schwartz et al., 1996, Table 7).  This coefficient
(0.003247) is then multiplied by the distributed lag adjustment factor of 1.9784 to estimate a distributed
lag model coefficient.

Functional Form: Log-linear
Coefficient: 0.006423
Incidence Rate: county-specific annual daily chronic lung disease mortality rate (ICD codes 490-496) 
Population: population of all ages
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Exhibit F-3.  Concentration-Response (C-R) Functions for Particulate Matter and Chronic Illness

Endpoint Name Pollutant Author Year Location Age Race Gender Other
Pollutants Averaging Time Beta Std Error Functional

Form

Chronic Bronchitis PM2.5 Abbey et al. 1995 SF, SD, South
Coast Air Basin 27+ All All None Annual Avg 0.0137 0.00680 Logistic

Chronic Bronchitis PM10 Schwartz 1993 53 cities 30+ All All None Annual Avg 0.0123 0.00434 Logistic



80   There are a limited number of studies that have estimated the impact of air pollution on chronic bronchitis.  An important
hindrance is the lack of health data and the associated air pollution levels over a number of years.  

81   Using the same data set, Abbey et al. (1995a, p. 140)  reported that the respondents in 1977 ranged in age from 27 to 95.  

82   The American Lung Association (2002b, Table 4) reports a chronic bronchitis prevalence rate for ages 18 and over of 4.43%
(American Lung Association, 2002b, Table 4). 
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F.3 Chronic Illness

Schwartz (1993) and Abbey et al. (1993; 1995c) provide evidence that PM exposure over a number of
years gives rise to the development of chronic bronchitis in the U.S., and a recent study by McDonnell et
al. (1999) provides evidence that ozone exposure is linked to the development of asthma in adults.  These
results are consistent with research that has found chronic exposure to pollutants leads to declining
pulmonary functioning (Detels et al., 1991; Ackermann-Liebrich et al., 1997; Abbey et al., 1998).80 

F.3.1 Chronic Bronchitis (Abbey et al., 1995c, California)

Abbey et al. (1995c) examined the relationship between estimated PM2.5 (annual mean from 1966 to
1977), PM10 (annual mean from 1973 to 1977) and TSP  (annual mean from 1973 to 1977) and the same
chronic respiratory symptoms in a sample population of 1,868 Californian Seventh Day Adventists.  The
initial survey was conducted in 1977 and the final survey in 1987.  To ensure a better estimate of
exposure, the study participants had to have been living in the same area for an extended period of time. 
In single-pollutant models, there was a statistically significant PM2.5 relationship with development of
chronic bronchitis, but not for AOD or asthma; PM10 was significantly associated with chronic bronchitis
and AOD; and TSP was significantly associated with all cases of all three chronic symptoms.  Other
pollutants were not examined.  The C-R function is based on the results of the single pollutant model
presented in Table 2.

Single Pollutant Model

The estimated coefficient (0.0137) is presented for a one :g/m3 change in PM2.5 (Abbey et al., 1995c,
Table 2).  The standard error is calculated from the reported relative risk (1.81) and 95% confidence
interval (0.98-3.25) for a 45 :g/m3 change in PM2.5 (Abbey et al., 1995c, Table 2).

Functional Form: Logistic
Coefficient: 0.0137
Standard Error: 0.00680
Incidence Rate: annual bronchitis incidence rate per person (Abbey et al., 1993, Table 3) = 0.00378
Population: population of ages 27 and older81 without chronic bronchitis = 95.57%82 of population 27+

F.3.2 Chronic Bronchitis (Schwartz, 1993)

Schwartz (1993) examined survey data collected from 3,874 adults ranging in age from 30 to 74, and
living in 53 urban areas in the U.S.  The survey was conducted between 1974 and 1975, as part of the
National Health and Nutrition Examination Survey, and is representative of the non-institutionalized U.S.
population.  Schwartz (1993, Table 3) reported chronic bronchitis prevalence rates in the study population
by age, race, and gender.  Non-white males under 52 years old had the lowest rate (1.7%) and white males
52 years and older had the highest rate (9.3%).  The study examined the relationship between the



83   Respiratory illness defined as a significant condition, coded by an examining physician as ICD-8 code 460-519.

84  The conversion of TSP to PM10 is from ESEERCO (1994, p. V-5), who cited studies by EPA (1986) and the California Air
Resources Board (1982).

85   The American Lung Association (2002b, Table 4) reports a chronic bronchitis prevalence rate for ages 18 and over of 4.43%
(American Lung Association, 2002b, Table 4). 
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prevalence of reported chronic bronchitis, asthma, shortness of breath (dyspnea) and respiratory illness83,
and the annual levels of TSP, collected in the year prior to the survey (TSP was the only pollutant
examined in this study).  TSP was significantly related to the prevalence of chronic bronchitis, and
marginally significant for respiratory illness.  No effect was found for asthma or dyspnea.  The C-R
function for PM10 is estimated from the results of the single pollutant model reported for TSP.

Single Pollutant Model

The estimated coefficient is based on the odds ratio ( 1.07) associated with 10 :g/m3 change in TSP
(Schwartz, 1993, p.  9).  Assuming that PM10 is 55 percent of TSP84 and that particulates greater than ten
micrometers are harmless, the coefficient is calculated by dividing the TSP coefficient by 0.55.  The
standard error for the coefficient is calculated from the 95% confidence interval for the odds ratio (1.02 to
1.12) (Schwartz, 1993, p.  9). 

Schwartz (1993) examined the prevalence of chronic bronchitis, not its incidence.  To use Schwartz’s
study and still estimate the change in incidence, there are at least two possible approaches.  The first is to
simply assume that it is appropriate to use the baseline incidence of chronic bronchitis in a C-R function
with the estimated coefficient from Schwartz’s study, to directly estimate the change in incidence.  The
second is to estimate the percentage change in the prevalence rate for chronic bronchitis using the
estimated coefficient from Schwartz’s study in a C-R function, and then to assume that this percentage
change applies to a baseline incidence rate obtained from another source.  (That is, if the prevalence
declines by 25 percent with a drop in PM, then baseline incidence drops by 25 percent with the same drop
in PM.)  This analysis is using the latter approach, and estimates a percentage change in prevalence which
is then applied to a baseline incidence rate.  The scaling factor used in the C-R function is the ratio of
chronic bronchitis incidence rate (estimated from Abbey et al. (1993)) to chronic bronchitis prevalence
rate (estimated from American Lung Association (2002b, Table 4)).

Functional Form: Logistic
Coefficient: 0.0123
Standard Error: 0.00434
Incidence Rate: annual chronic bronchitis prevalence rate per person (American Lung Association,
2002b, Table 4) = 0.0443
Population: population of ages 30 and older without chronic bronchitis = 95.57%85 of population 30+ 
Adjustment Factor: ratio of chronic bronchitis incidence to chronic bronchitis prevalence =
0.00378/0.0443 = 0.085 (Abbey et al., 1993, Table 3; American Lung Association, 2002b, Table 4)
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Exhibit F-4.  Concentration-Response (C-R) Functions for Particulate Matter and Hospital Admissions

Endpoint Name Pollutant Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1 Beta Std Error Functional

Form

Asthma PM2.5 Sheppard et al. 1999 Seattle, WA <65 All All CO 24-hr avg 0.002505 0.001045 Log-linear

Chronic Lung Disease PM2.5 Lippmann et al. 2000 Detroit, MI 65+ All All O3 24-hr avg 0.001089 0.002420 Log-linear

Chronic Lung Disease PM2.5 Moolgavkar 2000 Los Angeles, CA 65+ All All CO 24-hr avg 0.0008 0.001000 Log-linear

Chronic Lung Disease PM2.5 Moolgavkar 2000 Los Angeles, CA 18-64 All All CO 24-hr avg 0.0020 0.000909 Log-linear

Chronic Lung Disease
(less Asthma) PM10 Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.002839 0.001351 Log-linear

Pneumonia PM2.5 Lippmann et al. 2000 Detroit, MI 65+ All All O3 24-hr avg 0.004480 0.001918 Log-linear

Pneumonia PM10 Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.002049 0.000570 Log-linear

All Cardiovascular PM2.5 Moolgavkar 2000 Los Angeles, CA 65+ All All CO 24-hr avg 0.0005 0.000556 Log-linear

All Cardiovascular PM2.5 Moolgavkar 2000 Los Angeles, CA 18-64 All All CO 24-hr avg 0.0009 0.000500 Log-linear

All Cardiovascular PM10 Samet et al. 2000 14 cities 65+ All All None 24-hr avg 0.001183 0.000111 Log-linear

Dysrhythmia PM2.5 Lippmann et al. 2000 Detroit, MI 65+ All All O3 24-hr avg 0.002138 0.002525 Log-linear

Heart Failure PM2.5 Lippmann et al. 2000 Detroit, MI 65+ All All O3 24-hr avg 0.004668 0.001650 Log-linear

Ischemic Heart Disease PM2.5 Lippmann et al. 2000 Detroit, MI 65+ All All O3 24-hr avg 0.001116 0.001339 Log-linear

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.



86   PM2.5 levels were estimated from light scattering data.

87    The reported IQR change in the abstract and text is smaller than reported in Table 3.  We assume the change reported in the
abstract and text to be correct because greater number of significant figures are reported.
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F.4 Hospitalizations

F.4.1 Hospital Admissions for Asthma (Sheppard et al., 1999, Seattle)

Sheppard et al. (1999) studied the relation between air pollution in Seattle and nonelderly (<65)
hospital admissions for asthma from 1987 to 1994.  They used air quality data for PM10, PM2.5, coarse
PM1010-2.5, SO2, ozone, and CO in a Poisson regression model with control for time trends, seasonal
variations, and temperature-related weather effects.86 They found asthma hospital admissions associated
with PM10, PM2.5, PM10-2.5, CO, and ozone.  They did not observe an association for SO2. They found PM
and CO to be jointly associated with asthma admissions.  The best fitting co-pollutant models were found
using ozone.  However, ozone data was only available April through October, so they did not consider
ozone further.  For the remaining pollutants, the best fitting models included PM2.5 and CO.  Results for
other co-pollutant models were not reported.  The PM2.5 C-R function is based on the multipollutant
model.

Multipollutant Model (PM2.5 and CO)

The coefficient and standard error for the co-pollutant model with CO are calculated from a relative
risk of 1.03 (95% CI 1.01-1.06) for an 11.8 :g/m3 increase87 in PM2.5 (Sheppard et al., 1999, p. 28).

Functional Form: Log-linear
Coefficient: 0.002505
Standard Error: 0.001045
Incidence Rate: region-specific daily hospital admission rate for asthma admissions per person <65 (ICD
code 493)
Population: population of ages 65 and under

F.4.2 Hospital Admissions for Chronic Lung Disease (Lippmann et al., 2000, Detroit)

Lippmann et al. (2000) studied the association between particulate matter and daily mortality and
hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods,
1985-1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was
the main focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and
respiratory endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson
regression model with generalized additive models (GAM) to adjust for nonlinear relationships and
temporal trends.  In single pollutant models, all PM metrics were statistically significant for pneumonia
(ICD codes 480-486), PM10-2.5 and PM10 were significant for ischemic heart disease (ICD code 410-414),
and PM2.5 and PM10 were significant for heart failure (ICD code 428).  There were positive, but not
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496) and
dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone, SO2, NO2, or
CO, the results were generally comparable.  The PM2.5 C-R function is based on results of the co-pollutant
model with ozone.

Multipollutant Model (PM2.5 and ozone)



88   In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports the
“estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially the same.  For
example, a true percent change of 0.8 would result in a relative risk of 1.008 and coefficient of 0.000797.  The “estimated” percent
change, as reported by Moolgavkar, of 0.8 results in a relative risk of 1.008032 and coefficient of 0.0008.
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The co-pollutant coefficient and standard error are calculated from a relative risk of 1.040 (95% CI
0.877-1.234) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 26).  

Functional Form: Log-linear
Coefficient: 0.001089
Standard Error: 0.002420
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease admissions per
person 65+ (ICD codes 490-496)
Population: population of ages 65 and older

F.4.3 Hospital Admissions for Chronic Lung Disease (Moolgavkar, 2000b)

Moolgavkar (2000b) examined the association between air pollution and COPD hospital admissions
(ICD 490-496) in the Chicago, Los Angeles, and Phoenix metropolitan areas.  He collected daily air
pollution data for ozone, SO2, NO2, CO, and PM10 in all three areas.  PM2.5 data was available only in Los
Angeles.  The data were analyzed using a Poisson regression model with generalized additive models to
adjust for temporal trends.  Separate models were run for 0 to 5 day lags in each location.  Among the 65+
age group in Chicago and Phoenix, weak associations were observed between the gaseous pollutants and
admissions.  No consistent associations were observed for PM10.  In Los Angeles, marginally significant
associations were observed for PM2.5, which were generally lower than for the gases.  In co-pollutant
models with CO, the PM2.5 effect was reduced.  Similar results were observed in the 0-19 and 20-64 year
old age groups.  

The PM2.5 C-R functions are based on the co-pollutant models (PM2.5 and CO) reported for the 20-64
and 65+ age groups.  Since the true PM effect is most likely best represented by a distributed lag model,
then any single lag model should underestimate the total PM effect.  As a result, we selected the lag
models with the greatest effect estimates for use in the C-R functions.
   

Ages 65 and older

Multipollutant Model (PM2.5 and CO)

In a model with CO, the coefficient and standard error are calculated from an estimated percent change
of 0.888 and t-statistic of 0.8 for a 10 :g/m3 increase in PM2.5 in the two-day lag model (Moolgavkar,
2000b, Table 3, p. 80).

Functional Form: Log-linear
Coefficient: 0.0008
Standard Error: 0.001000
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease admissions per
person 65+ (ICD codes 490-496)
Population: population of ages 65 and older



89   Although Moolgavkar (2000b) reports results for the 20-64 year old age range, for comparability to other studies, we apply the
results to the population of ages 18 to 64.

90   In a log-linear model, the percent change is equal to (RR - 1) * 100.  In this study, Moolgavkar defines and reports the
“estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR are essentially the same.  For
example, a true percent change of 2.0 would result in a relative risk of 1.020 and coefficient of 0.001980.  The “estimated” percent
change, as reported by Moolgavkar, of 2.0 results in a relative risk of 1.020201 and coefficient of 0.002.

91   Moolgavkar (2000b) reports results for ICD codes 490-496.  In order to avoid double counting non-elderly asthma
hospitalizations (ICD code 493) with Sheppard et al. (1999) in a total benefits estimation, we have excluded ICD code 493 from the
baseline incidence rate used in this function. 

92  The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit, Minneapolis/St. Paul,
Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.
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Ages 18 to 6489

Multipollutant Model (PM2.5 and CO)

In a model with CO, the coefficient and standard error are calculated from an estimated percent change
of 2.090 and t-statistic of 2.2 for a 10 :g/m3 increase in PM2.5 in the two-day lag model (Moolgavkar,
2000b, Table 4, p. 81).

Functional Form: Log-linear
Coefficient: 0.0020
Standard Error: 0.000909
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease admissions per
person 18-64 (ICD codes 490-492, 494-496)91

Population: population of ages 18 to 64

F.4.4 Hospital Admissions for Chronic Lung Disease (less Asthma) (Samet et al., 2000, 14 Cities)

Samet et al. (2000) examined the relationship between air pollution and hospital admissions for
individuals of ages 65 and over in 14 cities across the country.92  Cities were selected on the basis of
available air pollution data for at least four years between 1985 and 1994 during which at least 50% of
days had observations between the city-specific start and end of measurements.  Hospital admissions were
obtained from the Health Care Financing Administration (HCFA) for the years 1992 and 1993.  Poisson
regression was used in the analysis with unconstrained distributed lag models to examine the possibility
that air pollution affects hospital admissions on not only the same day but on later days as well.  The use
of unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice of lag
period to the investigator’s discretion.  The C-R functions are based on the pooled estimate across all 14
cities, using the unconstrained distributed lag model and fixed or random effects estimates, depending on
the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM10 on hospital admissions were used. 
The authors performed a second-stage regression to estimate the impact of SO2 and O3 on the PM10 -
hospitalization effect.  For ozone, the PM10 effect in each city was regressed on the correlation between
ozone and particulate matter (the slope of a PM10 vs. O3 regression) in that city.  The fitted line for this
regression will have a slope of zero if there is no relationship, meaning that the effect of PM10 is not
dependent on the correlation between PM10 and O3.  The adjusted point estimate was obtained by



93   Joel Schwartz (co-author), personal communication. 

94   Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the
morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”

95   The random effects estimate of the unconstrained distributed lag model was chosen for COPD admissions since the chi-square
test of heterogeneity was significant (see Samet et al., 2000, Part II - Table 15).  
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determining the PM10 effect when the correlation between the pollutants is zero (i.e. the y-intercept of the
fitted line).  The effect of O3 adjustment on the PM10 - hospitalization relationship appeared to be minimal
except for the case of COPD.  In this case, adjustment increased the point estimate of the independent
particulate matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons, there
appeared to be little impact of O3 adjustment.93  Furthermore, the statistical power and robustness of this
second-stage approach to co-pollutant adjustment are in question because of the small number of
observations used in the regression (14 cities) and the potential for one or two observations to
dramatically impact the results.94  Finally, for the case of COPD, adjustment led to an increased PM10
independent effect, meaning that if the adjustment is valid, the impact on hospital admissions will be
underestimated rather than overestimated.

Single Pollutant Model

The estimated PM10 coefficient is based on a 2.88 percent increase (RR = 1.0288) in admissions due to
a PM10 change of 10.0 :g/m3 (Samet et al., 2000, Part II - Table 14)95.  The standard error is estimated
from the reported lower (0.19 percent) and upper bounds (5.64 percent) of the percent increase (Samet et
al., 2000, Part II - Table 14).

Functional Form: Log-linear
Coefficient: 0.002839
Standard Error: 0.001351
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person 65+
(ICD codes 490-492, 494-496)
Population: population of ages 65 and older

F.4.5 Hospital Admissions for Pneumonia (Lippmann et al., 2000, Detroit)

Lippmann et al. (2000) studied the association between particulate matter and daily mortality and
hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods,
1985-1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was
the main focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and
respiratory endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson
regression model with generalized additive models (GAM) to adjust for nonlinear relationships and
temporal trends.  In single pollutant models, all PM metrics were statistically significant for pneumonia
(ICD codes 480-486), PM10-2.5 and PM10 were significant for ischemic heart disease (ICD code 410-414),
and PM2.5 and PM10 were significant for heart failure (ICD code 428).  There were positive, but not
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496) and
dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone, SO2, NO2, or
CO, the results were generally comparable.  The PM2.5 C-R function is based on the results of the co-
pollutant model with ozone.



96  The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit, Minneapolis/St. Paul,
Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.

97   Joel Schwartz (co-author), personal communication. 

98   Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “while the approach used in the morbidity
analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”
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Multipollutant Model (PM2.5 and ozone)

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.175 (95% CI
1.026-1.345) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 26).  

Functional Form: Log-linear
Coefficient: 0.004480
Standard Error: 0.001918
Incidence Rate: region-specific daily hospital admission rate for pneumonia admissions per person 65+
(ICD codes 480-487)
Population: population of ages 65 and older

F.4.6 Hospital Admissions for Pneumonia (Samet et al., 2000, 14 Cities)

Samet et al. (2000) examined the relationship between air pollution and hospital admissions for
individuals of ages 65 and over in 14 cities across the country.96  Cities were selected on the basis of
available air pollution data for at least four years between 1985 and 1994 during which at least 50% of
days had observations between the city-specific start and end of measurements.  Hospital admissions were
obtained from the Health Care Financing Administration (HCFA) for the years 1992 and 1993.  Poisson
regression was used in the analysis with unconstrained distributed lag models to examine the possibility
that air pollution affects hospital admissions on not only the same day but on later days as well.  The use
of unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice of lag
period to the investigator’s discretion.  The C-R functions are based on the pooled estimate across all 14
cities, using the unconstrained distributed lag model and fixed or random effects estimates, depending on
the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM10 on hospital admissions were used. 
The authors performed a second-stage regression to estimate the impact of SO2 and O3 on the PM10 -
hospitalization effect.  For ozone, the PM10 effect in each city was regressed on the correlation between
ozone and particulate matter (the slope of a PM10 vs. O3 regression) in that city.  The fitted line for this
regression will have a slope of zero if there is no relationship, meaning that the effect of PM10 is not
dependent on the correlation between PM10 and O3.  The adjusted point estimate was obtained by
determining the PM10 effect when the correlation between the pollutants is zero (i.e. the y-intercept of the
fitted line).  The effect of O3 adjustment on the PM10 - hospitalization relationship appeared to be minimal
except for the case of COPD.  In this case, adjustment increased the point estimate of the independent
particulate matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons, there
appeared to be little impact of O3 adjustment.97  Furthermore, the statistical power and robustness of this
second-stage approach to co-pollutant adjustment are in question because of the small number of
observations used in the regression (14 cities) and the potential for one or two observations to
dramatically impact the results.98  Finally, for the case of COPD, adjustment led to an increased PM10



99   The random effects estimate of the unconstrained distributed lag model was chosen for pneumonia admissions since the chi-
square test of heterogeneity was significant (see Samet et al., 2000, Part II - Table 15).  

100   In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization study by Moolgavkar (2000b),
he defines and reports the “estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR
are essentially the same.  For example, a true percent change of 0.5 would result in a relative risk of 1.005 and coefficient of
0.000499.  Assuming that the 0.5 is the “estimated” percent change described previously would result in a relative risk of 1.005013
and coefficient of 0.0005.  We assume that the “estimated” percent changes reported in this study reflect the definition from
(Moolgavkar, 2000b).
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independent effect, meaning that if the adjustment is valid, the impact on hospital admissions will be
underestimated rather than overestimated.

Single Pollutant Model

The estimated PM10 coefficient is based on a 2.07 percent increase (RR = 1.0207) in admissions due to
a PM10 change of 10.0 :g/m3 (Samet et al., 2000, Part II - Table 14)99.  The standard error is estimated
from the reported lower (0.94 percent) and upper bounds (3.22 percent) of the percent increase (Samet et
al., 2000, Part II - Table 14).

Functional Form: Log-linear
Coefficient: 0.002049
Standard Error: 0.000570
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+ (ICD codes
480-487)
Population: population of ages 65 and older

F.4.7 Hospital Admissions for All Cardiovascular (Moolgavkar, 2000a, Los Angeles)

Moolgavkar (2000a) examined the association between air pollution and cardiovascular hospital
admissions (ICD 390-448) in the Chicago, Los Angeles, and Phoenix metropolitan areas.  He collected
daily air pollution data for ozone, SO2, NO2, CO, and PM10 in all three areas.  PM2.5 data was available
only in Los Angeles.  The data were analyzed using a Poisson regression model with generalized additive
models to adjust for temporal trends.  Separate models were run for 0 to 5 day lags in each location. 
Among the 65+ age group, the gaseous pollutants generally exhibited stronger effects than PM10 or PM2.5. 
The strongest overall effects were observed for SO2 and CO.  In a single pollutant model, PM2.5 was
statistically significant for lag 0 and lag 1.  In co-pollutant models with CO, the PM2.5 effect dropped out
and CO remained significant.  For ages 20-64, SO2 and CO exhibited the strongest effect and any PM2.5
effect dropped out in co-pollutant models with CO.  The PM2.5 C-R functions are based on co-pollutant
(PM2.5 and CO) models.

Ages 65 and older

Multipollutant Model (PM2.5 and CO)

In a model with CO, the coefficient and standard error are calculated from an estimated percent change
of 0.5100 and t-statistic of 0.9 for a 10 :g/m3 increase in PM2.5 in the one day lag model (Moolgavkar,
2000a, Table 3, p. 1202).

Functional Form: Log-linear



101   Moolgavkar (2000a) reports results for ICD codes 390-429.  In the benefits analysis, avoided nonfatal heart attacks are
estimated using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al. function is a modified heart attack
hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization.  In order to avoid
double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used in this function. 

102   Although Moolgavkar (2000a) reports results for the 20-64 year old age range, for comparability to other studies, we apply the
results to the population of ages 18 to 64.

103   In a log-linear model, the percent change is equal to (RR - 1) * 100.  In a similar hospitalization study by Moolgavkar (2000b),
he defines and reports the “estimated” percent change as (log RR * 100).  Because the relative risk is close to 1, RR-1 and log RR
are essentially the same.  For example, a true percent change of 0.9 would result in a relative risk of 1.009 and coefficient of
0.000896.  Assuming that the 0.9 is the “estimated” percent change described previously would result in a relative risk of 1.009041
and coefficient of 0.0009.  We assume that the “estimated” percent changes reported in this study reflect the definition from
(Moolgavkar, 2000b).

104    Moolgavkar (2000a) reports results that include ICD code 410 (heart attack).  In the benefits analysis, avoided nonfatal heart
attacks are estimated using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al. function is a modified
heart attack hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization.  In order to
avoid double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used in this
function. 

105  The cities under investigation include: Birmingham, Boulder, Canton, Chicago, Colorado Springs, Detroit, Minneapolis/St. Paul,
Nashville, New Haven, Pittsburgh, Provo/Orem, Seattle, Spokane, Youngstown.
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Coefficient: 0.0005
Standard Error: 0.000556
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions per person
65+ (ICD codes 390-409, 411-459)101

Population: population of ages 65 and older

Ages 18 to 64102

Multipollutant Model (PM2.5 and CO)

In a model with CO, the coefficient and standard error are calculated from an estimated percent change
of 0.9103 and t-statistic of 1.8 for a 10 :g/m3 increase in PM2.5 in the zero lag model (Moolgavkar, 2000a,
Table 4, p. 1203).

Functional Form: Log-linear
Coefficient: 0.0009
Standard Error: 0.000500
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular admissions per person
ages 18 to 64 (ICD codes 390-409, 411-459)104

Population: population of ages 18 to 64

F.4.8 Hospital Admissions for All Cardiovascular (Samet et al., 2000, 14 Cities)

Samet et al. (2000) examined the relationship between air pollution and hospital admissions for
individuals of ages 65 and over in 14 cities across the country.105  Cities were selected on the basis of
available air pollution data for at least four years between 1985 and 1994 during which at least 50% of
days had observations between the city-specific start and end of measurements.  Hospital admissions were
obtained from the Health Care Financing Administration (HCFA) for the years 1992 and 1993.  Poisson
regression was used in the analysis with unconstrained distributed lag models to examine the possibility



106   Joel Schwartz (co-author), personal communication. 

107   Commentary from the Health Review Committee (Samet et al., 2000, p.77) states that “[w]hile the approach used in the
morbidity analysis is novel...the question arises as to the adequacy of statistical power for performing these analyses.”

108   The fixed effects estimate of the unconstrained distributed lag model was chosen for CVD admissions since the chi-square test
of heterogeneity was non-significant (see Samet et al., 2000, Part II - Table 15).  
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that air pollution affects hospital admissions on not only the same day but on later days as well.  The use
of unconstrained distributed lags has the advantages of (1) not inappropriately biasing down risk
estimates due to tight constraints (e.g. one day lag) and (2) not leaving the often arbitrary choice of lag
period to the investigator’s discretion.  The C-R functions are based on the pooled estimate across all 14
cities, using the unconstrained distributed lag model and fixed or random effects estimates, depending on
the results of a test for heterogeneity.

For this analysis, the unadjusted, base models for the effect of PM10 on hospital admissions were used. 
The authors performed a second-stage regression to estimate the impact of SO2 and O3 on the PM10 -
hospitalization effect.  For ozone, the PM10 effect in each city was regressed on the correlation between
ozone and particulate matter (the slope of a PM10 vs. O3 regression) in that city.  The fitted line for this
regression will have a slope of zero if there is no relationship, meaning that the effect of PM10 is not
dependent on the correlation between PM10 and O3.  The adjusted point estimate was obtained by
determining the PM10 effect when the correlation between the pollutants is zero (i.e. the y-intercept of the
fitted line).  The effect of O3 adjustment on the PM10 - hospitalization relationship appeared to be minimal
except for the case of COPD.  In this case, adjustment increased the point estimate of the independent
particulate matter effect.  The variance of this estimate, however, was quite large and the confidence
intervals of the adjusted and unadjusted estimates overlapped substantially.  For these reasons, there
appeared to be little impact of O3 adjustment.106  Furthermore, the statistical power and robustness of this
second-stage approach to co-pollutant adjustment are in question because of the small number of
observations used in the regression (14 cities) and the potential for one or two observations to
dramatically impact the results.107  Finally, for the case of COPD, adjustment led to an increased PM10
independent effect, meaning that if the adjustment is valid, the impact on hospital admissions will be
underestimated rather than overestimated.

Single Pollutant Model

The estimated PM10 coefficient is based on a 1.19 percent increase (RR = 1.0119) in admissions due to
a PM10 change of 10.0 :g/m3 (Samet et al., 2000, Part II - Table 14)108.  The standard error is estimated
from the reported lower (0.97 percent) and upper bounds (1.41 percent) of the percent increase (Samet et
al., 2000, Part II - Table 14).

Functional Form: Log-linear
Coefficient: 0.001183
Standard Error: 0.000111
Incidence Rate: region-specific daily hospital admission rate for all cardiovascular disease per person
65+ (ICD codes 390-459)
Population: population of ages 65 and older

F.4.9 Hospital Admissions for Dysrhythmia (Lippmann et al., 2000, Detroit)
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Lippmann et al. (2000) studied the association between particulate matter and daily mortality and
hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods,
1985-1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was
the main focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and
respiratory endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson
regression model with generalized additive models (GAM) to adjust for nonlinear relationships and
temporal trends.  In single pollutant models, all PM metrics were statistically significant for pneumonia
(ICD codes 480-486), PM10-2.5 and PM10 were significant for ischemic heart disease (ICD code 410-414),
and PM2.5 and PM10 were significant for heart failure (ICD code 428).  There were positive, but not
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496) and
dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone, SO2, NO2, or
CO, the results were generally comparable.  The PM2.5 C-R function is based on the co-pollutant model
with ozone.

Multipollutant Model (PM2.5 and ozone)

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.080 (95% CI
0.904-1.291) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 27).  

Functional Form: Log-linear
Coefficient: 0.002138
Standard Error: 0.002525
Incidence Rate: region-specific daily hospital admission rate for dysrhythmia admissions per person 65+
(ICD code 427)
Population: population of ages 65 and older

F.4.10 Hospital Admissions for Heart Failure (Lippmann et al., 2000, Detroit)

Lippmann et al. (2000) studied the association between particulate matter and daily mortality and
hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods,
1985-1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was
the main focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and
respiratory endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson
regression model with generalized additive models (GAM) to adjust for nonlinear relationships and
temporal trends.  In single pollutant models, all PM metrics were statistically significant for pneumonia
(ICD codes 480-486), PM10-2.5 and PM10 were significant for ischemic heart disease (ICD code 410-414),
and PM2.5 and PM10 were significant for heart failure (ICD code 428).  There were positive, but not
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496) and
dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone, SO2, NO2, or
CO, the results were generally comparable.  The PM2.5 C-R function is based on the co-pollutant model
with ozone.

Multipollutant Model (PM2.5 and ozone)

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.183 (95% CI
1.053-1.329) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 27).  

Functional Form: Log-linear
Coefficient: 0.004668
Standard Error: 0.001650



109   Lippmann et al. (2000) reports results for ICD codes 410-414.  In the benefits analysis, avoided nonfatal heart attacks are
estimated using the results reported by Peters et al. (2001).  The baseline rate in the Peters et al. function is a modified heart attack
hospitalization rate (ICD code 410), since most, if not all, nonfatal heart attacks will require hospitalization.  In order to avoid
double counting heart attack hospitalizations, we have excluded ICD code 410 from the baseline incidence rate used in this function. 
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Incidence Rate: region-specific daily hospital admission rate for heart failure admissions per person 65+
(ICD code 428)
Population: population of ages 65 and older

F.4.11 Hospital Admissions for Ischemic Heart Disease (Lippmann et al., 2000, Detroit)

Lippmann et al. (2000) studied the association between particulate matter and daily mortality and
hospitalizations among the elderly in Detroit, MI.  Data were analyzed for two separate study periods,
1985-1990 and 1992-1994.  The 1992-1994 study period had a greater variety of data on PM size and was
the main focus of the report.  The authors collected hospitalization data for a variety of cardiovascular and
respiratory endpoints.  They used daily air quality data for PM10, PM2.5, and PM10-2.5 in a Poisson
regression model with generalized additive models (GAM) to adjust for nonlinear relationships and
temporal trends.  In single pollutant models, all PM metrics were statistically significant for pneumonia
(ICD codes 480-486), PM10-2.5 and PM10 were significant for ischemic heart disease (ICD code 410-414),
and PM2.5 and PM10 were significant for heart failure (ICD code 428).  There were positive, but not
statistically significant associations, between the PM metrics and COPD (ICD codes 490-496) and
dysrhythmia (ICD code 427).  In separate co-pollutant models with PM and either ozone, SO2, NO2, or
CO, the results were generally comparable.  The PM2.5 C-R function is based on the co-pollutant model
with ozone.

Multipollutant Model (PM2.5 and ozone)

The co-pollutant coefficient and standard error are calculated from a relative risk of 1.041 (95% CI
0.947-1.144) for a 36 :g/m3 increase in PM2.5 (Lippmann et al., 2000, Table 14, p. 27).  

Functional Form: Log-linear
Coefficient: 0.001116
Standard Error: 0.001339
Incidence Rate: region-specific daily hospital admission rate for ischemic heart disease admissions per
person 65+ (ICD codes 411-414)109

Population: population of ages 65 and older
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Exhibit F-5.  Concentration-Response (C-R) Functions for Particulate Matter and Emergency Room Visits

Endpoint Name Pollutant Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1 Beta Std Error Functional

Form

Asthma PM2.5 Norris et al. 1999 Seattle, WA <18 All All NO2, SO2 24-hr avg 0.016527 0.004139 Log-linear

Asthma PM10 Schwartz et al. 1993 Seattle, WA <65 All All None 24-hr avg 0.00367 0.00126 Log-linear

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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F.5 Emergency Room Visits

F.5.1 Emergency Room Visits for Asthma (Norris et al., 1999)

Norris et al. (1999) examined the relation between air pollution in Seattle and childhood (<18) hospital
admissions for asthma from 1995 to 1996.  The authors used air quality data for PM10, light scattering
(used to estimate fine PM), CO, SO2, NO2, and O3 in a Poisson regression model with adjustments for day
of the week, time trends, temperature, and dew point.  They found significant associations between
asthma ER visits and light scattering (converted to PM2.5), PM10, and CO.   No association was found
between O3, NO2, or SO2 and asthma ER visits, although O3 had a significant amount of missing data.  In
multipollutant models with either PM metric (light scattering or PM10) and NO2 and SO2, the PM
coefficients remained significant while the gaseous pollutants were not associated with increased asthma
ER visits.  The PM2.5 C-R function is on the multipollutant model reported.

Multipollutant Model (PM2.5, NO2, and SO2)

In a model with NO2 and SO2, the PM2.5 coefficient and standard error are calculated from a relative
risk of 1.17 (95% CI 1.08-1.26) for a 9.5 :g/m3 increase in PM2.5 (Norris et al., 1999, p. 491).  

Functional Form: Log-linear
Coefficient: 0.016527
Standard Error: 0.004139
Incidence Rate: region-specific daily emergency room rate for asthma admissions per person <18 (ICD
code 493)
Population: population of ages under 18

F.5.2 Emergency Room Visits for Asthma (Schwartz et al., 1993, Seattle)

Schwartz et al. (1993) examined the relationship between air quality and emergency room visits for
asthma (ICD codes 493,493.01,493.10,493.90,493.91) in persons under 65 and 65 and over, living in
Seattle from September 1989 to September 1990.  Using single-pollutant models they found daily levels
of PM10 linked to ER visits in individuals ages under 65, and they found no effect in individuals ages 65
and over.  They did not find a significant effect for SO2 and ozone in either age group.  The results of the
single pollutant model for PM10 are used in this analysis.

Single Pollutant Model

The PM10 coefficient and standard error are reported by Schwartz et al. (1993, p. 829) for a unit :g/m3

increase in four-day average PM10 levels.

Functional Form: Log-linear
Coefficient: 0.00367
Standard Error: 0.00126
Incidence Rate: region-specific daily emergency room rate for asthma admissions per person <65 (ICD
code 493)
Population: population of ages under 65
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Exhibit F-6.  Concentration-Response (C-R) Functions for Particulate Matter and Acute Effects

Endpoint Name Pollutant Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1 Beta Std

Error
Functional

Form

Acute Bronchitis PM2.5 Dockery et al. 1996 24 communities 8-12 All All None Annual Avg 0.027212 0.017096 Logistic

Acute Myocardial Infarction,
Nonfatal PM2.5 Peters et al. 2001 Boston, MA 18+ All All None 24-hr avg 0.024121 0.009285 Logistic

Any of 19 Respiratory
Symptoms PM10 Krupnick 1990 Los Angeles, CA 18-64 All All O3 24-hr avg 0.000461 0.000239 Linear

Lower Respiratory Symptoms PM2.5 Schwartz et al. 1994 6 cities 7-14 All All None 24-hr avg 0.018232 0.005856 Logistic

Minor Restricted Activity
Days PM2.5

Ostro and
Rothschild 1989 nationwide 18-64 All All O3 24-hr avg 0.00741 0.00070 Log-linear

Work Loss Days PM2.5 Ostro 1987 nationwide 18-64 All All None 24-hr avg 0.0046 0.00036 Log-linear

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for more
detail on the specific averaging time used in the study.



110   The original study measured PM2.1, however when using the study's results we use PM2.5.  This makes only a negligible
difference, assuming that the adverse effects of PM2.1 and PM2.5 are comparable.
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F.6 Acute Effects

F.6.1 Acute Bronchitis (Dockery et al., 1996)

Dockery et al. (1996) examined the relationship between PM and other pollutants on the reported rates
of asthma, persistent wheeze, chronic cough, and bronchitis, in a study of 13,369 children ages 8-12
living in 24 communities in U.S. and Canada.  Health data were collected in 1988-1991, and single-
pollutant models were used in the analysis to test a number of measures of particulate air pollution. 
Dockery et al. found that annual level of sulfates and particle acidity were significantly related  to
bronchitis, and PM2.1 and PM10 were marginally significantly related to bronchitis.110  They also found
nitrates were linked to asthma, and sulfates linked to chronic phlegm.  It is important to note that the
study examined annual pollution exposures, and the authors did not rule out that acute (daily) exposures
could be related to asthma attacks and other acute episodes.  Earlier work, by Dockery et al. (1989), based
on six U.S. cities, found acute bronchitis and chronic cough significantly related to PM15.  Because it is
based on a larger sample, the Dockery et al. (1996) study is the better study to develop a C-R function
linking PM2.5 with bronchitis. 

Bronchitis was counted in the study only if there were “reports of symptoms in the past 12 months”
(Dockery et al., 1996, p.  501).  It is unclear, however, if the cases of bronchitis are acute and temporary,
or if the bronchitis is a chronic condition.  Dockery et al. found no relationship between PM and chronic
cough and chronic phlegm, which are important indicators of chronic bronchitis.  For this analysis, we
assumed that the C-R function based on Dockery et al. is measuring acute bronchitis.  The C-R function is
based on results of the single pollutant model reported in Table 1. 

Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (1.50) and 95%
confidence interval (0.91-2.47) associated with being in the most polluted city (PM2.1 = 20.7 :g/m3)
versus the least polluted city (PM2.1 = 5.8 :g/m3) (Dockery et al., 1996, Tables 1 and 4).  The original
study used PM2.1, however, we use the PM2.1 coefficient and apply it to PM2.5 data.

Functional Form: Logistic
Coefficient: 0.027212
Standard Error: 0.017096
Incidence Rate: annual bronchitis incidence rate per person = 0.043 (American Lung Association, 2002a,
Table 11)
Population: population of ages 8-12

F.6.2 Acute Myocardial Infarction (Heart Attacks), Nonfatal (Peters et al., 2001)

Peters et al. (2001) studied the relationship between increased particulate air pollution and onset of
heart attacks in the Boston area from 1995 to 1996.  The authors used air quality data for PM10, PM10-2.5,
PM2.5,“black carbon”, O3, CO, NO2, and SO2 in a case-crossover analysis.  For each subject, the case
period was matched to three control periods, each 24 hours apart.  In univariate analyses, the authors
observed a positive association between heart attack occurrence and PM2.5 levels hours before and days
before onset.  The authors estimated multivariate conditional logistic models including two-hour and



111  This estimate assumes that all heart attacks that are not instantly fatal will result in a hospitalization.  In addition, Rosamond et
al. (1999) report that approximately six percent of male and eight percent of female hospitalized heart attack patients die within 28
days (either in or outside of the hospital).  We applied a factor of 0.93 to the number of hospitalizations to estimate the number of
nonfatal heart attacks per year.
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twenty-four hour pollutant concentrations for each pollutant.  They found significant and independent
associations between heart attack occurrence and both two-hour and twenty-four hour PM2.5
concentrations before onset.  Significant associations were observed for PM10 as well.  None of the other
particle measures or gaseous pollutants were significantly associated with acute myocardial infarction for
the two hour or twenty-four hour period before onset.

The patient population for this study was selected from health centers across the United States.  The
mean age of participants was 62 years old, with 21% of the study population under the age of 50.  In
order to capture the full magnitude of heart attack occurrence potentially associated with air pollution and
because age was not listed as an inclusion criteria for sample selection, we apply an age range of 18 and
over in the C-R function.  According to the National Hospital Discharge Survey, there were no
hospitalizations for heart attacks among children <15 years of age in 1999 and only 5.5% of all
hospitalizations occurred in 15-44 year olds (Popovic, 2001, Table 10).

Single Pollutant Model

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI 1.13-2.34) for a
20 :g/m3 increase in twenty-four hour average PM2.5 (Peters et al., 2001, Table 4, p. 2813).

Functional Form: Logistic
Coefficient: 0.024121
Standard Error: 0.009285
Incidence Rate: region-specific daily nonfatal heart attack rate per person 18+ = 93% of region-specific
daily heart attack hospitalization rate (ICD code 410) 111

Population: population of ages 18 and older

F.6.3 Any of 19 Respiratory Symptoms (Krupnick et al., 1990)

Krupnick et al. (1990) estimated the impact of air pollution on the incidence of any of 19 respiratory
symptoms or conditions in 570 adults and 756 children living in three communities in Los Angeles,
California from September 1978 to March 1979.  Krupnick et al. (1990) listed 13 specific “symptoms or
conditions”: head cold, chest cold, sinus trouble, croup, cough with phlegm, sore throat, asthma, hay
fever, doctor-diagnosed ear infection, flu, pneumonia, bronchitis, and bronchiolitis.  The other six
symptoms or conditions are not specified.

In their analysis, they included COH, ozone, NO2, and SO2, and they used a logistic regression model
that takes into account whether a respondent was well or not the previous day.  A key difference between
this and the usual logistic model, is that the model they used includes a lagged value of the dependent
variable.  In single-pollutant models, daily O3, COH, and SO2 were significantly related to respiratory
symptoms in adults.  Controlling for other pollutants, they found that ozone was still significant.  The
results were more variable for COH and SO2, perhaps due to collinearity.  NO2 had no significant effect. 
No effect was seen in children for any pollutant.  The results from the two-pollutant model with COH and
ozone are used to develop a C-R function.

Multipollutant Model (PM10 and ozone)



112  Krupnick and Kopp (1988, p. 2-24) and ESEERCO (1994, p. V-32) used the same C-R functional form as that used here.

113  Krupnick et al. (1990, Table 1) reported the age distribution in their complete data, but they did not report the ages of
individuals that were considered “adult.”  This analysis assumes that individuals 18 and older were considered adult.  Only a small
percentage (0.6%) of the study population is above the age of 60, so the C-R function was limited to the adult population. up through
the age of 65.
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The C-R function used to estimate the change in ARD2 associated with a change in daily average
PM10 concentration is based on Krupnick et al. (1990, p. 12):112

Functional Form: Linear
Coefficient: first derivative of the stationary probability = 0.000461
Standard Error: 0.000239
Population: population of ages 18-64 years113

The logistic regression model used by Krupnick et al. (1990) takes into account whether a respondent
was well or not the previous day.  Following Krupnick et al. (p. 12), the probability that one is sick is on a
given day is:

where: 
X = the matrix of explanatory variables
p0 = the probability of sickness on day t, given wellness on day t-1, and 
p1 = the probability of sickness on day t, given sickness on day t-1.  

In other words, the transition probabilities are estimated using a logistic function; the key difference
between this and the usual logistic model, is that the model includes a lagged value of the dependent
variable.

To calculate the impact of COH (or other pollutants) on the probability of ARD2, it is possible, in
principle, to estimate ARD2 before the change in COH and after the change:



114  The model without NO2 (Krupnick et al., 1990, Table V equation 3) was used in this analysis, but the full suite of coefficient
estimates for this model were not reported.  Krupnick et al. (1990, Table IV) reported all of the estimated coefficients for a model of
children and for a model of adults when four pollutants were included (ozone, COH, SO2, and NO2).  However, because of high
collinearity between NO2 and COH, NO2 was dropped from some of the reported analyses (Krupnick et al., p. 10), and the resulting
coefficient estimates changed substantially (see Krupnick et al., 1990, Table IV).  Both the ozone and COH coefficients dropped by
about a factor of two or more. 
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However the full suite of coefficient estimates are not available.114  Rather than use the full suite of
coefficient values, the impact of COH on the probability of probability of ARD2 may be approximated by
the derivative of ARD2 with respect to COH:

where $COH is the reported logistic regression coefficient for COH.  Since COH data are not available for
the benefits analysis, an estimated PM10 logistic regression coefficient is used based on the following
assumed relationship between PM10, COH, and TSP:

This analysis uses $COH = 0.0088 (Krupnick et al., 1990, Table V equation 3).  The conversion from
COH to TSP is based on study-specific information provided to ESEERCO (1994, p. V-32).  The
conversion of TSP to PM10 is from also from ESEERCO (1994, p. V-5), which cited studies by EPA
(1986) and the California Air Resources Board (1982).

The change in the incidence of ARD2 associated with a given change in COH is then estimated by:

This analysis uses transition probabilities obtained from Krupnick et al. as reported by ESEERCO
(1994, p. V-32),  for the adult population: p1 = 0.7775 and p0 = 0.0468.  This implies:
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The standard error for the coefficient is derived using the reported standard error of the logistic
regression coefficient in Krupnick et al. (1990, Table V):

F.6.4 Lower Respiratory Symptoms (Schwartz et al., 1994)

Schwartz et al. (1994) used logistic regression to link lower respiratory symptoms in children with
SO2, NO2, ozone, PM10, PM2.5, sulfate and H+ (hydrogen ion).  Children were selected for the study if they
were exposed to indoor sources of air pollution: gas stoves and parental smoking.  The study enrolled
1,844 children into a year-long study that was conducted in different years (1984 to 1988) in six cities. 
The students were in grades two through five at the time of enrollment in 1984.  By the completion of the
final study, the cohort would then be in the eighth grade (ages 13-14); this suggests an age range of 7 to
14.

In single pollutant models SO2, NO2, PM2.5, and PM10 were significantly linked to cough.  In two-
pollutant models, PM10 had the most consistent relationship with cough; ozone was marginally
significant, controlling for PM10.  In models for upper respiratory symptoms, they reported a marginally
significant association for PM10.  In models for lower respiratory symptoms, they reported significant
single-pollutant models, using SO2, O3, PM2.5, PM10, SO4, and H+.  The PM2.5 C-R function is based on the
single pollutant model reported in Table 5.



115   The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health Statistics.  In
publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the study, it is not
clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for consistency with
other studies estimating impacts to non-elderly adult populations.
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Single Pollutant Model

The coefficient and standard error are calculated from the reported odds ratio (1.44) and 95%
confidence interval (1.15-1.82) associated with a 20 :g/m3 change in PM2.5 (Schwartz et al., 1994, Table
5).

Functional Form: Logistic
Coefficient: 0.018232
Standard Error: 0.005856
Incidence Rate: daily lower respiratory symptom incidence rate per person = 0.0012 (Schwartz et al.,
1994, Table 2)
Population: population of ages 7 to 14

F.6.5 Minor Restricted Activity Days: Ostro and Rothschild (1989)

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence of minor
restricted activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national
sample of the adult working population, ages 18 to 65, living in metropolitan areas.115  The annual
national survey results used in this analysis were conducted in 1976-1981.  Controlling for PM2.5, two-
week average ozone has highly variable association with RRADs and MRADs.  Controlling for ozone,
two-week average PM2.5 was significantly linked to both health endpoints in most years.  The C-R
function for PM is based on this co-pollutant model.

The study is based on a “convenience” sample of non-elderly individuals.  Applying the C-R function
to this age group is likely a slight underestimate, as it seems likely that elderly are at least as susceptible
to PM as individuals under 65.  The elderly appear more likely to die due to PM exposure than other age
groups (e.g., Schwartz, 1994d, p. 30) and a number of studies have found that hospital admissions for the
elderly are related to PM exposures (e.g., Schwartz, 1994b; Schwartz, 1994c).

Multipollutant Model (PM2.5 and ozone)

Using the results of the two-pollutant model, we developed separate coefficients for each year in the
analysis, which were then combined for use in this analysis.  The coefficient is a weighted average of the
coefficients in Ostro and Rothschild (1989, Table 4) using the inverse of the variance as the weight:



116   The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health Statistics.  In
publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the study, it is not
clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for consistency with
other studies estimating impacts to non-elderly adult populations.

117  The study used a two-week average pollution concentration; the C-R function uses a daily average, which is assumed to be a
reasonable approximation.  

Abt Associates Inc. April 2003F-38

σ γ σ γβ β
2 1 1

0 00070= ⇒ = = . .

σ

β
σ

σ

β
σ

γ
β

σ γβ
β

β

β

β

2
2

1976

1981

2
1976

1981

2
1976

1981

2
1976

1981

1
=



















=



















=
⋅











=

=

=

=

∑

∑

∑
∑var var .

i

i

i

i

i i

i

i

i

i

i

The standard error of the coefficient is calculated as follows, assuming that the estimated year-specific
coefficients are independent:

This reduces down to:

Functional Form: Log-linear
Coefficient: 0.00741
Standard Error: 0.00070
Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 (Ostro and
Rothschild, 1989, p. 243)
Population: adult population ages 18 to 64

F.6.6 Work Loss Days (Ostro, 1987)

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), restricted
activity days (RADs), and respiratory-related RADs (RRADs) in a national sample of the adult working
population, ages 18 to 65, living in metropolitan areas.116  The annual national survey results used in this
analysis were conducted in 1976-1981.  Ostro reported that two-week average PM2.5 levels117 were
significantly linked to work-loss days, RADs, and RRADs, however there was some year-to-year
variability in the results.  Separate coefficients were developed for each year in the analysis (1976-1981);
these coefficients were pooled.  The coefficient used in the concentration-response function presented
here is a weighted average of the coefficients in Ostro (1987, Table III) using the inverse of the variance
as the weight.

The study is based on a “convenience” sample of non-elderly individuals.  Applying the C-R function
to this age group is likely a slight underestimate, as it seems likely that elderly are at least as susceptible
to PM as individuals under 65.  The elderly appear more likely to die due to PM exposure than other age
groups (e.g., Schwartz, 1994d, p. 30) and a number of studies have found that hospital admissions for the
elderly are related to PM exposures (e.g., Schwartz, 1994b; Schwartz, 1994c).  On the other hand, the
number of workers over the age of 65 is relatively small; it was approximately 3% of the total workforce
in 2001 (U.S. Bureau of the Census, 2002, Table 561).
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Single Pollutant Model

The coefficient used in the C-R function is a weighted average of the coefficients in Ostro (1987,
Table III) using the inverse of the variance as the weight:

The standard error of the coefficient is calculated as follows, assuming that the estimated year-specific
coefficients are independent:

This eventually reduces down to:

Functional Form: Log-linear
Coefficient: 0.0046
Standard Error: 0.00036
Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 (U.S. Bureau of
the Census, 1997, No. 22; Adams et al., 1999, Table 41)
Population: adult population ages 18 to 64
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Exhibit F-7.  Concentration-Response (C-R) Functions for Particulate Matter and Asthma-Related Effects

Endpoint Name Pollutant Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1 Beta Std Error Functional

Form Notes

Acute Bronchitis PM2.5
McConnell et
al. 1999 Southern

California 9-15 All All None Annual Avg 0.022431 0.015957 Logistic

Asthma Exacerbation,
Asthma Attacks PM10

Whittemore
and Korn 1980 Los Angeles,

CA All All All O3 24-hr avg 0.001436 0.000558 Logistic

Asthma Exacerbation,
Cough PM2.5 Ostro et al. 2001 Los Angeles,

CA 8-13 Black All None 24-hr avg 0.003177 0.001156 Logistic New onset of
symptoms

Asthma Exacerbation,
Cough PM10 Vedal et al. 1998 Vancouver,

CAN 6-13 All All None 24-hr avg 0.007696 0.003786 Logistic

Asthma Exacerbation,
Moderate or Worse PM2.5 Ostro et al. 1991 Denver, CO All All All None 24-hr avg 0.0006 0.0003 Linear (log

of pollutant)

Asthma Exacerbation,
One or More Symptoms PM10 Yu et al. 2000 Seattle, WA 5-13 All All CO, SO2 24-hr avg 0.004879 0.005095 Logistic

Asthma Exacerbation,
Shortness of Breath PM2.5 Ostro et al. 2001 Los Angeles,

CA 8-13 Black All None 24-hr avg 0.003177 0.001550 Logistic New onset of
symptoms

Asthma Exacerbation,
Wheeze PM2.5 Ostro et al. 2001 Los Angeles,

CA 8-13 Black All None 24-hr avg 0.002565 0.001030 Logistic New onset of
symptoms

Chronic Phlegm PM2.5
McConnell et
al. 1999 Southern

California 9-15 All All None Annual Avg 0.063701 0.025580 Logistic

Upper Respiratory
Symptoms PM10 Pope et al. 1991 Utah Valley 9-11 All All None 24-hr avg 0.0036 0.0015 Logistic

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for more
detail on the specific averaging time used in the study.



118   Assuming that a child enters kindergarten at age 5, 4th grade corresponds to age 9 and 10th grade corresponds to age 15.  We
therefore applied the results of this study to children ages 9 to 15.

119    The American Lung Association (2002c, Table 7) estimates asthma prevalence for children ages 5 to 17 at 5.67% (based on
data from the 1999 National Health Interview Survey).
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F.7 Asthma-Related Effects

F.7.1 Acute Bronchitis (McConnell et al., 1999)

McConnell et al. (1999) examined the relationship between air pollution and bronchitic symptoms
among asthmatic 4th, 7th, and 10th grade children in southern California.118  The authors collected
information on the prevalence of bronchitis, chronic cough, and chronic phlegm among children with and
without a history of asthma and/or wheeze.  They used annual measurements of ozone, PM10, PM2.5, NO2,
and acids in a logistic regression model with adjustments for personal covariates.  Neither bronchitis,
cough, or phlegm were associated with any of the pollutants among children with no history of wheeze or
asthma or a history of wheeze without diagnosed asthma.  Among asthmatics, PM10 was significantly
associated with bronchitis and phlegm; PM2.5 was significantly associated with phlegm and marginally
associated with bronchitis; NO2 and acids were both significantly associated with phlegm; and ozone was
not significantly associated with any of the endpoints. 

Bronchitis was defined in the study by the question: “How many times in the past 12 months did your
child have bronchitis?” (McConnell et al., 1999, p. 757).  It is unclear, however, if the cases of bronchitis
are acute and temporary, or if the bronchitis is a chronic condition.  McConnell et al. found a relationship
between PM and chronic phlegm but none with chronic cough, each of which may be indicators of
chronic bronchitis.  For this analysis, we assumed that the C-R function based on McConnell et al. is
measuring acute bronchitis.  The PM2.5 C-R function for bronchitis among asthmatics is based on the
results of the single pollutant model reported in Table 3.

Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (1.4) and 95%
confidence interval (0.9-2.3) associated with an increase in yearly mean 2-week average PM2.5 of 15
:g/m3. (McConnell et al., 1999, Table 3) 

Functional Form: Logistic
Coefficient: 0.022431
Standard Error: 0.015957
Incidence Rate: annual incidence rate of one or more episodes of bronchitis per asthmatic = 0.326
(McConnell et al., 1999, Table 2)
Population: population of asthmatics ages 9 to 15 = 5.67%119 of population ages 9 to 15

F.7.2 Asthma Attacks (Whittemore and Korn, 1980)

Whittemore and Korn (1980) examined the relationship between air pollution and asthma attacks in a
survey of 443 children and adults, living in six communities in southern California during three 34-week
periods in 1972-1975.  The analysis focused on TSP and oxidants (Ox).  Respirable PM, NO2, SO2 were
highly correlated with TSP and excluded from the analysis. In a two pollutant model, daily levels of both
TSP and oxidants were significantly related to reported asthma attacks.  The results from this model were
used, and the oxidant result was adjusted so it may be used with ozone data.



120  The conversion of TSP to PM10 is from ESEERCO (1994, p. V-5), who cited studies by EPA (1986) and the California Air
Resources Board (1982).

121   Based on an analysis of the 1999 National Health Interview Survey, the daily incidence of wheezing attacks for adult asthmatics
is estimated to be 0.0550. In the same survey, wheezing attacks for children were examined, however, the number of wheezing
attacks per year were censored at 12 (compared to censoring at 95 for adults).  Due to the potential for underestimation of the
number of children’s wheezing attacks, we used the adult rate for all individuals.    

122   The authors note that there were 26 days in which PM2.5 concentrations were reported higher than PM10 concentrations.  The
majority of results the authors reported were based on the full dataset.  These results were used for the basis for the C-R functions.
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Multipollutant Model (PM10 and ozone)

The PM10 C-R function is based on the results of a co-pollutant model of TSP and ozone (Whittemore
and Korn, 1980, Table 5).  Assuming that PM10 is 55 percent of TSP120 and that particulates greater than
ten micrometers are harmless, the coefficient is calculated by dividing the TSP coefficient (0.00079) by
0.55.  The standard error is calculated from the two-tailed p-value (<0.01) reported by Whittemore and
Korn (1980, Table 5), which implies a t-value of at least 2.576 (assuming a large number of degrees of
freedom).

Functional Form: Logistic
Coefficient: 0.001436
Standard Error: 0.000558
Incidence Rate: daily incidence of asthma attacks = 0.0550121 
Population: population of asthmatics of all ages = 3.86% of the population of all ages (American Lung
Association, 2002c, Table 7)

F.7.3 Asthma Exacerbation, Cough (Ostro et al., 2001)

Ostro et al. (2001) studied the relation between air pollution in Los Angeles and asthma exacerbation
in African-American children (8 to 13 years old) from August to November 1993.  They used air quality
data for PM10, PM2.5, NO2, and O3 in a logistic regression model with control for age, income, time trends,
and temperature-related weather effects.122  Asthma symptom endpoints were defined in two ways:
“probability of a day with symptoms” and “onset of symptom episodes”.  New onset of a symptom
episode was defined as a day with symptoms followed by a symptom-free day.  The authors found cough
prevalence associated with PM10 and PM2.5 and cough incidence associated with PM2.5 PM10, and NO2. 
Ozone was not significantly associated with cough among asthmatics.  The PM2.5 C-R function is based
on the results of the single pollutant model looking at the onset of new symptoms. 

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.10 (95% CI 1.03-1.18) for a 30
:g/m3 increase in 12-hour average PM2.5 concentration.

The C-R function based on this model will estimate the number of new onset episodes of cough
avoided.  In order to convert this estimate to the total number of episodes avoided, the results are adjusted
by an estimate of the duration of symptom episodes.  The average duration can be estimated from Ostro et
al. (2001) using the ratio of the probability of a symptom episode to the probability of a new onset
episode.  For cough, this ratio is 2.2 (14.5% divided by 6.7%) (Ostro et al., 2001, p.202).



123   On average, 17.3% of African-American asthmatics have cough episodes on a given day (Ostro et al., 2001, p.202).  Only those
who are symptom-free on the previous day (1-0.145 = 85.5%) are at-risk for a new onset episode.

124    The American Lung Association (2002c, Table 9) estimates asthma prevalence for African-American children ages 5 to 17 at
7.26% (based on data from the 1999 National Health Interview Survey).
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In addition, not all children are at-risk for a new onset of cough, as defined by the study.  On average,
14.5% of African-American asthmatics have cough on a given day (Ostro et al., 2001, p.202).  Only those
who are symptom-free on the previous day are at-risk for a new onset episode (1-0.145 = 85.5%).  As a
result, a factor of 85.5% is used in the function to estimate the population of African-American 8 to 13
year old children at-risk for a new cough episode.

Functional Form: Logistic
Coefficient: 0.003177
Standard Error: 0.001156
Incidence Rate: daily new onset cough (incidence) rate per person (Ostro et al., 2001, p.202) = 0.067
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of cough =
6.21% of African-American population ages 8 to 13 multiplied (85.5% at-risk123 times 7.26%
asthmatic124)
Adjustment Factor: average number of consecutive days with a cough episode (days) = 2.2

F.7.4 Asthma Exacerbation, Cough (Vedal et al., 1998)

Vedal et al. (1998) studied the relationship between air pollution and respiratory symptoms among
asthmatics and non-asthmatic children (ages 6 to 13) in Port Alberni, British Columbia, Canada.  Four
groups of elementary school children were sampled from a prior cross-sectional study: (1) all children
with current asthma, (2) children without doctor diagnosed asthma who experienced a drop in FEV after
exercise, (3) children not in groups 1 or 2 who had evidence of airway obstruction, and (4) a control
group of children with matched by classroom.  The authors used logistic regression and generalized
estimating equations to examine the association between daily PM10 levels and daily increases in various
respiratory symptoms among these groups.  In the entire sample of children, PM10 was significantly
associated with cough, phlegm, nose symptoms, and throat soreness.  Among children with diagnosed
asthma, the authors report a significant association between PM10 and cough symptoms, while no
consistent effects were observed in the other groups.  Since the study population has an over-
representation of asthmatics, due to the sampling strategy, the results from the full sample of children are
not generalizeable to the entire population.  The C-R function presented below is based on results among
asthmatics only.  

Single Pollutant Model

The PM10 coefficient and standard error are based on an increase in odds of 8% (95% CI 0-16%)
reported in the abstract for a 10 :g/m3 increase in daily average PM10.

Functional Form: Logistic
Coefficient: 0.007696
Standard Error: 0.003786
Incidence Rate: daily cough rate per person (Vedal et al., 1998, Table 1, p. 1038) = 0.086



125   The American Lung Association (2002c, Table 7) estimates asthma prevalence for children 5-17 at 5.67% (based on data from
the 1999 National Health Interview Survey).

126   The C-R function is applied to asthmatics of all ages, although the study population consists of asthmatics between the ages of
18 and 70.  It seems reasonable to assume that individuals over the age of 70 are at least as susceptible as individuals in the study
population.  It also seems reasonable to assume that individuals under the age of 18 are also susceptible.  For example, controlling
for oxidant levels, Whittemore and Korn (1980) found TSP significantly related to asthma attacks in a study population comprised
primarily (59 percent) of individuals less than 16 years of age.
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Population: asthmatic population ages 6 to 13 = 5.67%125 of population ages 6 to 13

F.7.5 Asthma Exacerbation, Moderate or Worse (Ostro et al., 1991)

Ostro et al. (1991) examined the effect of air pollution on asthmatics, ages 18 to 70, living in Denver,
Colorado from December 1987 to February 1988.  The respondents in this study were asked to record
daily a subjective rating of their overall asthma status each day (0=none, 1=mild, 2=moderate, 3=severe,
4=incapacitating).  Ostro et al. then examined the relationship between moderate (or worse) asthma and
H+, sulfate, SO2, PM2.5, estimated PM2.5, PM10, nitrate, and nitric acid.  Daily levels of H+ were linked to
cough, asthma, and shortness of breath.  PM2.5 was linked to asthma.  Sulfate was linked to shortness of
breath.  No effects seen for other pollutants. The C-R function is based on a single-pollutant linear
regression model where the log of the pollutant is used.

Single Pollutant Model

Two PM2.5 coefficients are presented, both equal 0.0006, however only one is significant.  The
coefficient based on data that does not include estimates of missing PM2.5 values is not significant (std
error =  0.0053); the coefficient that includes estimates of missing PM2.5 values (estimated using a
function of sulfate and nitrate) is significant at p < 0.5 (std error =  0.0003).  The latter coefficient is used
here.

The C-R function to estimate the change in the number of days with moderate (or worse) asthma 

Functional Form: Linear (using log of the pollutant)
Coefficient: 0.0006
Standard Error: 0.0003
Population: population of asthmatics of all ages126 = 3.86% of the population of all ages (American Lung
Association, 2002c, Table 7)

F.7.6 Asthma Exacerbation, One or More Symptoms (Yu et al., 2000)

Yu et al. (2000) examined the association between air pollution and asthmatic symptoms among mild
to moderate asthmatic children ages 5-13 in Seattle.  They collected air quality data for CO, SO2, PM10,
and PM1.0 and asked study subjects to record symptoms daily.  They used logistic regression models with
generalized estimating equations in two different approaches.  A “marginal approach” was used to
estimate the impact of air pollution on asthma symptoms and a “transition approach” was used to estimate



127   The American Lung Association (2002c, Table 7) estimates asthma prevalence for children 5 to 17 at 5.67% (based on data
from the 1999 National Health Interview Survey).
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the association conditioned on the previous day’s outcome.  The primary endpoint, odds of at least one
asthma symptom, was significantly associated with CO, PM10, and PM1.0 in single pollutant models.  In
multipollutant models, CO remained significant while PM effects declined slightly.  The magnitude of the
effects were similar between the “marginal” and “transition” approaches.  The C-R function is based on
the results of the “transition approach,” where the previous day’s symptoms is an explanatory variable.  

Multipollutant Model (PM10, CO, SO2)

The C-R function is based on the results of the “transition approach,” where the previous day’s
symptoms is an explanatory variable.  The multipollutant PM10 coefficient and standard error are based on
the odds ratio (1.05) and 95% confidence interval (0.95-1.16) for a 10 :g/m3 increase in one-day lagged
daily average PM10 (Yu et al., 2000, Table 4, p. 1212).

Functional Form: Logistic
Coefficient: 0.004879
Standard Error: 0.005095
Incidence Rate: daily rate of at least one asthma episode per person (Yu et al., 2000, Table 2, p. 1212) =
0.60
Population: asthmatic population ages 5 to 13 = 5.67%127 of population ages 5 to 13

F.7.7 Asthma Exacerbation, Shortness of Breath (Ostro et al., 2001)

Ostro et al. (2001) studied the relationship between air pollution in Los Angeles and asthma
exacerbation in African-American children (8 to 13 years old) from August to November 1993.  They
used air quality data for PM10, PM2.5, NO2, and ozone in a logistic regression model with control for age,
income, time trends, and temperature-related weather effects.  Asthma symptom endpoints were defined
in two ways: “probability of a day with symptoms” and “new onset of a symptom episode”.  New onset of
a symptom episode was defined as a day with symptoms followed by a symptom-free day.  The authors
found that both the prevalent and incident episodes of shortness of breath were associated with PM2.5 and
PM10.  Neither ozone nor NO2 were significantly associated with shortness of breath among asthmatics. 
The PM2.5 C-R function is based on the results of a single pollutant model looking at the onset of new
symptoms.  

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.10 (95% CI 1.00-1.20) for a 30
:g/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 2001, Table 5, p.204).

The C-R function based on this model will estimate the number of new onset episodes of shortness of
breath avoided.  In order to convert this estimate to the total number of episodes avoided, the results are
adjusted by an estimate of the duration of symptom episodes.  The average duration can be estimated
from Ostro et al. (2001) using the ratio of the probability of a symptom episode to the probability of a
new onset episode.  For shortness of breath, this ratio is 2.0 (7.4% divided by 3.7%) (Ostro et al., 2001,
p.202).



128   On average, 7.4% of African-American asthmatics have shortness of breath episodes on a given day (Ostro et al., 2001, p.202). 
Only those who are symptom-free on the previous day (1-0.074 = 92.6%) are at-risk for a new onset episode.

129   The American Lung Association (2002c, Table 9) estimates asthma prevalence for African-American children ages 5 to 17 at
7.26% (based on data from the 1999 National Health Interview Survey).
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In addition, not all children are at-risk for a new onset of shortness of breath, as defined by the study. 
On average, 7.4% of African-American asthmatics have shortness of breath episodes on a given day
(Ostro et al., 2001, p.202).  Only those who are symptom-free on the previous day are at-risk for a new
onset episode (1-0.074 = 92.6%).  As a result, a factor of 92.6% is used in the function to estimate the
population of African-American 8 to 13 year old children at-risk for a new shortness of breath episode.

Functional Form: Logistic
Coefficient: 0.003177
Standard Error: 0.001550
Incidence Rate: daily new onset shortness of breath (incidence) rate per person (Ostro et al., 2001,
p.202) = 0.037
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of shortness of
breath = 6.72% of African-American population ages 8 to 13 multiplied (92.6% at-risk128 times 7.26%
asthmatic129)
Adjustment Factor: average number of consecutive days with a shortness of breath episode (days) = 2.0

F.7.8 Asthma Exacerbation, Wheeze (Ostro et al., 2001)

Ostro et al. (2001) studied the relation between air pollution in Los Angeles and asthma exacerbation
in African-American children (8 to 13 years old) from August to November 1993.  They used air quality
data for PM10, PM2.5, NO2, and O3 in a logistic regression model with control for age, income, time trends,
and temperature-related weather effects.  Asthma symptom endpoints were defined in two ways:
“probability of a day with symptoms” and “onset of symptom episodes”.  New onset of a symptom
episode was defined as a day with symptoms followed by a symptom-free day.  The authors found both
the prevalence and incidence of wheeze associated with PM2.5 PM10, and NO2.  Ozone was not
significantly associated with wheeze among asthmatics.  The PM2.5 C-R function is based on the results of
a single pollutant model looking at the onset of new symptoms.   

Single Pollutant Model

The coefficient and standard error are based on an odds ratio of 1.08 (95% CI 1.01-1.14) for a 30
:g/m3 increase in 12-hour average PM2.5 concentration (Ostro et al., 2001, Table 5, p.204).

The C-R function based on this model will estimate the number of new onset episodes of wheeze
avoided.  In order to convert this estimate to the total number of episodes avoided, the results are adjusted
by an estimate of the duration of symptom episodes.  The average duration can be estimated from Ostro et
al. (2001) using the ratio of the probability of a symptom episode to the probability of a new onset
episode.  For wheeze, this ratio is 2.3 (17.3% divided by 7.6%) (Ostro et al., 2001, p.202).

In addition, not all children are at-risk for a new onset of wheeze, as defined by the study.  On average,
17.3% of African-American asthmatics have wheeze on a given day (Ostro et al., 2001, p.202).  Only
those who are symptom-free on the previous day are at-risk for a new onset episode (1-0.173 = 82.7%). 
As a result, a factor of 82.7% is used in the function to estimate the population of African-American 8 to
13 year old children at-risk for a new wheeze episode.



130   On average, 17.3% of African-American asthmatics have wheeze episodes on a given day (Ostro et al., 2001, p.202).  Only
those who are symptom-free on the previous day (1-0.173 = 82.7%) are at-risk for a new onset episode.

131    The American Lung Association (2002c, Table 9) estimates asthma prevalence for African-American children ages 5 to 17 at
7.26% (based on data from the 1999 National Health Interview Survey).

132   Assuming that a child enters kindergarten at age 5, 4th grade corresponds to age 9 and 10th grade corresponds to age 15.  We
therefore applied the results of this study to children ages 9 to 15.
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Functional Form: Logistic
Coefficient: 0.002565
Standard Error: 0.001030
Incidence Rate: daily new onset wheeze (incidence) rate per person (Ostro et al., 2001, p.202) = 0.076
Population: asthmatic African-American population ages 8 to 13 at-risk for a new episode of wheeze =
6.00% of African-American population ages 8 to 13 multiplied (82.7% at-risk130 times 7.26%
asthmatic131)
Adjustment Factor: average number of consecutive days with a wheeze episode (days) = 2.3

F.7.9 Chronic Phlegm (McConnell et al., 1999)

McConnell et al. (1999) examined the relationship between air pollution and bronchitic symptoms
among asthmatic 4th, 7th, and 10th grade children in southern California.132  The authors collected
information on the prevalence of bronchitis, chronic cough, and chronic phlegm among children with and
without a history of asthma and/or wheeze.  They used annual measurements of ozone, PM10, PM2.5, NO2,
and acids in a logistic regression model with adjustments for personal covariates.  Neither bronchitis,
cough, or phlegm were associated with any of the pollutants among children with no history of wheeze or
asthma or a history of wheeze without diagnosed asthma.  Among asthmatics, PM10 was significantly
associated with bronchitis and phlegm; PM2.5 was significantly associated with phlegm and marginally
associated with bronchitis; NO2 and acids were both significantly associated with phlegm; and ozone was
not significantly associated with any of the endpoints. 

Phlegm was defined in the study by the question: “Other than with colds, does this child usually seem
congested in the chest or bring up phlegm?” (McConnell et al., 1999, p. 757).  The authors refer to this
definition as “chronic phlegm” and we also assume that the term “usually” refers to chronic, rather than
acute, phlegm.  The PM C-R functions for chronic phlegm among asthmatics are based on the results of
the single pollutant model reported in Table 3.

Single Pollutant Model

The estimated logistic coefficient and standard error are based on the odds ratio (2.6) and 95%
confidence interval (1.2-5.4) associated with an increase in yearly mean 2-week average PM2.5 of 15
:g/m3. (McConnell et al., 1999, Table 3) 

Functional Form: Logistic
Coefficient: 0.063701
Standard Error: 0.025580
Incidence Rate: annual incidence rate of phlegm per asthmatic = 0.257 (McConnell et al., 1999, Table 2)



133    The American Lung Association (2002c, Table 7) estimates asthma prevalence for children ages 5 to 17 at 5.67% (based on
data from the 1999 National Health Interview Survey).

134    The American Lung Association (2002c, Table 7) estimates asthma prevalence for children ages 5 to 17 at 5.67% (based on
data from the 1999 National Health Interview Survey).

Abt Associates Inc. April 2003F-48

Population: population of asthmatics ages 9 to 15 = 5.67%133 of population ages 9 to 15

F.7.10 Upper Respiratory Symptoms (Pope et al., 1991)

Using logistic regression, Pope et al. (1991) estimated the impact of PM10 on the incidence of a variety
of minor symptoms in 55 subjects (34 “school-based” and 21 “patient-based”) living in the Utah Valley
from December 1989 through March 1990.  The children in the Pope et al. study were asked to record
respiratory symptoms in a daily diary.  With this information, the daily occurrences of upper respiratory
symptoms (URS) and lower respiratory symptoms (LRS) were related to daily PM10 concentrations.  Pope
et al. describe URS as consisting of one or more of the following symptoms:  runny or stuffy nose; wet
cough; and burning, aching, or red eyes.  Levels of ozone, NO2, and SO2 were reported low during this
period, and were not included in the analysis.  The sample in this study is relatively small and is most
representative of the asthmatic population, rather than the general population.  The school-based subjects
(ranging in age from 9 to 11) were chosen based on “a positive response to one or more of three
questions: ever wheezed without a cold, wheezed for 3 days or more out of the week for a month or
longer, and/or had a doctor say the ‘child has asthma’ (Pope et al., 1991, p. 669).”  The patient-based
subjects (ranging in age from 8 to 72) were receiving treatment for asthma and were referred by local
physicians.  Regression results for the school-based sample (Pope et al., 1991, Table 5) show PM10
significantly associated with both upper and lower respiratory symptoms.  The patient-based sample did
not find a significant PM10 effect.  The results from the school-based sample are used here.

Single Pollutant Model

The coefficient and standard error for a one :g/m3 change in PM10 is reported in Table 5.

Functional Form: Logistic
Coefficient: 0.0036
Standard Error: 0.0015
Incidence Rate: daily upper respiratory symptom incidence rate per person = 0.3419 (Pope et al., 1991,
Table 2)
Population: asthmatic population ages 9 to 11 = 5.67%134 of population ages 9 to 11
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Appendix G: Ozone Concentration-Response Functions

In this Appendix, we present the concentration-response (C-R) functions used to estimate ozone-
related adverse health effects.  Each sub-section has an Exhibit with a brief description of the C-R
function and the underlying parameters.  Following each Exhibit, we present a brief summary of each of
the studies and any items that are unique to the study.

Note that the main text describes the methods that we used to choose these C-R functions from the
wide range available in the literature.  In addition, Appendix D mathematically derives the standard types
of C-R functions that we encountered in the epidemiological literature, such as, log-linear, logistic and
linear, so we simply note here the type of functional form.  Finally, Appendix E presents a detailed
description of the sources for the incidence and prevalence data used in these C-R functions.
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Exhibit G-1.  Concentration-Response (C-R) Functions for Ozone and Short-Term Mortality

Endpoint Name Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1

Functional
Form Beta Std Error

Non-Accidental Ito and Thurston 1996 Chicago, IL All All All PM10 1-hr max Log-linear 0.000634 0.000251

Non-Accidental Kinney et al. 1995 Los Angeles, CA All All All PM10 1-hr max Log-linear 0 0.000214

Non-Accidental Moolgavkar et al. 1995 Philadelphia, PA All All All SO2, TSP 24-hr avg Log-linear 0.000611 0.000216

Non-Accidental Samet et al. 1997 Philadelphia, PA All All All CO, NO2, SO2,
TSP 24-hr avg Log-linear 0.000936 0.000312

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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G .1 Short-term Mortality

Exhibit 1 summarizes the C-R functions used to estimate the relationship between ozone and short-
term mortality.  Detailed summaries of each of the studies used to generate the functions are described
below, along with the parameters used in each of the functions.

G .1.1 Short-Term Mortality, Non-Accidental (Ito and Thurston, 1996, Chicago)

Ito and Thurston (1996) examined the relationship between daily non-accidental mortality and air
pollution levels in Cook County, Illinois from 1985 to 1990.  They examined daily levels of ozone, PM10,
SO2, and CO, and found a significant relationship for ozone and PM10 with both pollutants in the model;
no significant effects were found for SO2 and CO.  In single pollutant models the effects were slightly
larger. The C-R function for ozone is based on the results of the co-pollutant model.  

Multipollutant Model (ozone and PM10)

In a co-pollutant model with PM10, the coefficient (0.000634) and standard error (0.000251) were
obtained directly from the author because the published paper reported incorrect information.

Functional Form: Log-linear
Coefficient: 0.000634 
Standard Error: 0.000251 
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages

G .1.2 Short-Term Mortality, Non-Accidental (Kinney et al., 1995, Los Angeles)

Kinney et al. (1995) examined the relationship between daily non-accidental mortality and air
pollution levels in Los Angeles, California from 1985 to 1990.  They examined ozone, PM10, and CO, and
found a significant relationship for each pollutant in single pollutant models.  The effect for ozone
dropped to zero with the inclusion of PM10 in the model, while the effect for CO and PM10 appeared co-
pollutant ozone models.  The C-R function for ozone is based on the results of the co-pollutant model.    

Multipollutant Model (ozone and PM10)

In a model with PM10, the coefficient and standard error are based on the relative risk (1.00) and 95%
confidence interval (0.94-1.06) reported for a 143 ppb increase in daily one-hour maximum ozone
concentration (Kinney et al., 1995, Table 2, p. 64).      

Functional Form: Log-linear
Coefficient: 0
Standard Error: 0.000214 
Incidence: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages

G .1.3 Short-Term Mortality, Non-Accidental (Moolgavkar et al., 1995, Philadelphia)
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Moolgavkar et al. (1995) examined the relationship between daily non-accidental mortality and air
pollution levels in Philadelphia, Pennsylvania from 1973 to 1988.  They examined ozone, TSP, and SO2 
in a three-pollutant model, and found a significant relationship for ozone and SO2; TSP was not
significant.  In season-specific models, ozone was significantly associated with mortality only in the
summer months.  The C-R function for ozone is based on the full-year three-pollutant model reported in
Table 5 (Moolgavkar et al., 1995, p. 482).  

Multipollutant Model (ozone, SO2, TSP)

The coefficient and standard error are based on the relative risk (1.063) and 95% confidence interval
(1.018-1.108) associated with a 100 ppb increase in daily average ozone (Moolgavkar et al., 1995, p. 482,
Table 5).

Functional Form: Log-linear
Coefficient: 0.000611
Standard Error: 0.000216
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages

G .1.4 Short-Term Mortality, Non-Accidental (Samet et al., 1997, Philadelphia)

Samet et al. (1997) examined the relationship between daily non-accidental mortality and air pollution
levels in Philadelphia, Pennsylvania from 1974 to 1988.  They examined ozone, TSP, SO2, NO2, and CO 
in a Poisson regression model.  In single pollutant models, ozone, SO2, TSP, and CO were significantly
associated with mortality.  In a five-pollutant model, they found a positive statistically significant
relationship for each pollutant except NO2.  The C-R function for ozone is based on the five-pollutant
model (ozone, CO, NO2, SO2, and TSP) reported in Table 9 (Samet et al., 1997, p. 20).

Multipollutant Model (ozone, CO, NO2, SO2, and TSP)

In a model with CO, NO2, SO2, and TSP, the ozone coefficient and standard error are based on the
percent increase (1.91) and t-statistic (3) associated with a 20.219 ppb increase in two-day average ozone
(Samet et al., 1997, p. 20, Table 9).

Functional Form: Log-linear
Coefficient: 0.000936
Standard Error: 0.000312
Incidence Rate: county-level daily non-accidental mortality rate (ICD codes <800) per person
Population: population of all ages
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Exhibit G-2.  Concentration-Response (C-R) Functions for Ozone and Chronic Illness

Endpoint Name Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1

Functional
Form Beta Std Error

Chronic Asthma McDonnell et al. 1999 SF, SD, South
Coast Air Basin 27+ All Male None annual avg 8-

hr avg Logistic 0.0277 0.0135

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.



135   The eight-hour ozone concentration is defined as 9:00 A.M. to 4:59 P.M.  The study used the 1973-1992 mean 8-hour average
ambient ozone concentration (McDonnell et al., 1999, p. 113).

136   The prevalence of asthma among males 27 and older (2.10 percent) was estimated from the 2000 National Health Interview
Survey (NHIS) public use data, available at ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHIS/2000.
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G .2 Chronic Illness

Exhibit 2 summarizes the C-R function ((McDonnell et al., 1999)) used to estimate the relationship
between ozone and chronic asthma.  A more detailed summary of McDonnell et al. (1999), and the
parameters used in the function, is described below.

G .2.1 Chronic Asthma  (McDonnell et al., 1999)

McDonnell et al. (1999) used the same cohort of Seventh-Day Adventists as Abbey et al. (1993), and
examined the association between air pollution and the onset of asthma in adults between 1977 and 1992. 
Males who did not report doctor-diagnosed asthma in 1977, but reported it in 1987 or 1992, had
significantly higher ozone exposures, controlling for other covariates; no significant effect was found
between ozone exposure and asthma in females.  No significant effect was reported for females or males
due to exposure to PM, NO2, SO2, or SO4.  The C-R function for ozone is based on the single pollutant
model for males reported in Table 5 (McDonnell et al., 1999, 1999, p. 117).  

Single Pollutant Model

The coefficient and standard error for males is reported in Table 5 for a unit increase in annual average
eight-hour ozone concentrations.135

Functional Form: Logistic
Coefficient: 0.0277
Standard Error: 0.0135
Incidence Rate: annual asthma incidence rate per person = 0.00219 (McDonnell et al., 1999, 1999, Table
4)
Population: non-asthmatic males age 27 and over = 97.9%136 of males 27+
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Exhibit G-3.  Concentration-Response (C-R) Functions for Ozone and Hospital Admissions

Endpoint Name Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1

Functional
Form Beta Std Error

All Respiratory Burnett et al. 2001 Toronto, CAN <2 All All PM2.5 1-hr max Log-linear 0.006309 0.001834

All Respiratory Schwartz 1995 New Haven, CT 65+ All All PM10 24-hr avg Log-linear 0.002652 0.001398

All Respiratory Schwartz 1995 Tacoma, WA 65+ All All PM10 24-hr avg Log-linear 0.007147 0.002565

Chronic Lung Disease Moolgavkar et al. 1997 Minneapolis, MN 65+ All All CO, PM10 24-hr avg Log-linear 0.002743 0.001699

Chronic Lung Disease
(less Asthma) Schwartz 1994 Detroit, MI 65+ All All PM10 24-hr avg Log-linear 0.00549 0.00205

Pneumonia Moolgavkar et al. 1997 Minneapolis, MN 65+ All All NO2, PM10,
SO2

24-hr avg Log-linear 0.003696 0.001030

Pneumonia Schwartz 1994 Detroit, MI 65+ All All PM10 24-hr avg Log-linear 0.00521 0.0013

Pneumonia Schwartz 1994 Minneapolis, MN 65+ All All PM10 24-hr avg Log-linear 0.003977 0.001865

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.
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G .3 Hospital Admissions

Exhibit 3 summarizes the C-R functions used to estimate the relationship between ozone and hospital
admissions.  Detailed summaries of each of the studies used to generate the functions are described
below, along with the parameters used in each of the functions.

G .3.1 Hospital Admissions for All Respiratory (Burnett et al., 2001, Toronto)

Burnett et al. (2001) studied the association between air pollution and acute respiratory hospital
admissions (ICD codes 493, 466, 464.4, 480-486) in Toronto from 1980-1994, among children less than 2
years of age.  They collected hourly concentrations of the gaseous pollutants, CO, NO2, SO2, and ozone. 
Daily measures of particulate matter were estimated for the May to August period of 1992-1994 using
TSP, sulfates, and coefficient of haze data.  The authors report a positive association between ozone in the
May through August months and respiratory hospital admissions, for several single days after elevated
ozone levels.  

The strongest association was found using a five-day moving average of ozone.  No association was
found in the September through April months.  In co-pollutant models with a particulate matter or another
gaseous pollutant, the ozone effect was only slightly diminished.  The effects for PM and gaseous
pollutants were generally significant in single pollutant models but diminished in co-pollutant models
with ozone, with the exception of CO.  The C-R function for ozone is based on a co-pollutant model with
PM2.5, using the five-day moving average of one-hour max ozone.  

Multipollutant Model (ozone and PM2.5)

In a model with PM2.5, the coefficient and standard error are based on the percent increase (33.0) and t-
statistic (3.44) associated with a 45.2 ppb increase in the five-day moving average of one-hour max ozone 
(Burnett et al., 2001, Table 3).  

Functional Form: Log-linear
Coefficient: 0.006309
Standard Error: 0.001834
Incidence Rate: region-specific daily hospital admission rate for all respiratory admissions per person
less than 2 years of age (ICD codes 464, 466, 480-487, 493)
Population: population less than 2 years of age

G .3.2 Hospital Admissions for All Respiratory (Schwartz, 1995, New Haven)

Schwartz (1995) examined the relationship between air pollution and respiratory hospital admissions
(ICD codes 460-519) for individuals 65 and older in New Haven, Connecticut, from January 1988 to
December 1990.  In single-pollutant models, PM10 and SO2 were significant, while ozone was marginally
significant.  In a co-pollutant model with ozone and PM10, both pollutants were significant.  PM10
remained significant in a model with SO2, while ozone was marginally significant when adjusted for SO2. 
SO2 was significant in a co-pollutant model with PM10 but not with ozone.  The ozone C-R function is
based on results from the co-pollutant model with PM10.  

Multipollutant Model (ozone and PM10)



137   To calculate the coefficient, a conversion of 1.96 :g/m3 per ppb is used, based on a density of ozone of 1.96 grams per liter (at
25 degrees Celsius).  Since there are 1000 liters in a cubic meter and a million :g in a gram, this density means that there are 1.96
billion :g of ozone in a cubic meter of ozone.  If a cubic meter has just one ppb of ozone, then this means that this particular cubic
meter has 1.96 :g of ozone (i.e., one ppb = 1.96 :g/m3).

138  To calculate the coefficient, a conversion of 1.96 :g/m3 per ppb is used, based on a density of ozone of 1.96 grams per liter (at
25 degrees Celsius).  Since there are 1000 liters in a cubic meter and a million :g in a gram, this density means that there are 1.96
billion :g of ozone in a cubic meter of ozone.  If a cubic meter has just one ppb of ozone, then this means that this particular cubic
meter has 1.96 :g of ozone (i.e., one ppb = 1.96 :g/m3).
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In a model with PM10, the coefficient and standard error are estimated from the relative risk (1.07) and
95% confidence interval (1.00-1.15) for a 50 :g/m3 increase in average daily ozone levels (Schwartz,
1995, Table 3, p. 534).137

Functional Form: Log-linear
Coefficient: 0.002652
Standard Error: 0.001398
Incidence Rate: region-specific daily hospital admission rate for respiratory admissions per person 65+
(ICD codes 460-519)
Population: population of ages 65 and older

G .3.3 Hospital Admissions for All Respiratory (Schwartz, 1995, Tacoma)

Schwartz (1995) examined the relationship between air pollution and hospital admissions for
individuals 65 and older in Tacoma, Washington, from January 1988 to December 1990.  In single-
pollutant models, PM10, ozone, and SO2 were all significant.  Ozone remained significant in separate co-
pollutant models with PM10 and SO2.  PM10 remained significant in a co-pollutant model with SO2, but not
in a co-pollutant model with ozone.  SO2 was not significant in either of the co-pollutant models.  The
ozone C-R function is based on results from the co-pollutant model with PM10.  

Multipollutant Model (ozone and PM10)

In a model with PM10, the coefficient and standard error are estimated from the relative risk (1.20) and
95% confidence interval (1.06-1.37) for a 50 :g/m3 increase in average daily ozone levels (Schwartz,
1995, Table 6, p. 535).138

Functional Form: Log-linear
Coefficient: 0.007147
Standard Error: 0.002565
Incidence Rate: region-specific daily hospital admission rate for respiratory admissions per person 65+
(ICD codes 460-519)
Population: population of ages 65 and older

G .3.4 Hospital Admissions for Chronic Lung Disease (Moolgavkar et al., 1997, Minneapolis)

Moolgavkar et al. (1997) examined the relationship between air pollution and hospital admissions
(ICD codes 490-496) for individuals 65 and older in Minneapolis-St. Paul, Minnesota, from January 1986
to December 1991.  In a Poisson regression, they found no significant effect for any of the pollutants
(PM10, ozone, or CO).  The effect for ozone was marginally significant.  The model with a 100 df



139   Schwartz (1994b) also reports results using generalized additive models to fit time and temperature variables, however no
standard error or confidence intervals were reported.
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smoother was reported to be optimal (p. 368).  The C-R function is based on the results from a three-
pollutant model (ozone, CO, PM10) using the 100 df smoother.

Multipollutant Model (ozone, CO, PM10)  

In a model with CO and PM10, the estimated coefficient and standard error are based on the percent
increase (4.2) and 95% confidence interval of the percent increase (-1.0-9.4) associated with a change in
daily average ozone levels of 15 ppb (Moolgavkar et al., 1997, Table 4 and p. 366).

Functional Form: Log-linear
Coefficient: 0.002743
Standard Error: 0.001699
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person 65+
(ICD codes 490-496)
Population: population of ages 65 and older

G .3.5 Hospital Admissions for Chronic Lung Disease (less Asthma) (Schwartz, 1994b, Detroit)

Schwartz (1994b) examined the relationship between air pollution and hospital admissions (ICD codes
491-492, 494-496) for individuals 65 and older in Detroit, Michigan, from January 1986 to December
1989.  In a two-pollutant Poisson regression model, Schwartz found both PM10 and ozone significantly
linked to pneumonia and COPD.  The authors state that effect estimates were relatively unchanged
compared to the unreported single pollutant models.  No significant associations were found between
either pollutant and asthma admissions.  The C-R function for chronic lung disease incidence is based on
the results of the “basic” co-pollutant model (ozone and PM10) presented in Table 4 (p. 651).139

Multipollutant Model (ozone and PM10)

The coefficient and standard error for the “basic” model are reported in Table 4 (Schwartz, 1994b,
p.651) for a one ppb change in daily average ozone.

Functional Form: Log-linear
Coefficient: 0.00549
Standard Error: 0.00205
Incidence Rate: region-specific daily hospital admission rate for chronic lung disease per person 65+
(ICD codes 490-492, 494-496)
Population: population of ages 65 and older

G .3.6 Hospital Admissions for Pneumonia (Moolgavkar et al., 1997, Minneapolis)

Moolgavkar et al. (1997) examined the relationship between air pollution and pneumonia hospital
admissions (ICD 480-487) for individuals 65 and older in Minneapolis-St. Paul, Minnesota, from January
1986 to December 1991.  In a four pollutant Poisson model examining pneumonia admissions in
Minneapolis, ozone was significant, while NO2, SO2, and PM10 were not significant.  The model with a



140   Schwartz (1994b) also reports results using generalized additive models to fit time and temperature variables, however no
standard error or confidence intervals were reported.
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130 df smoother was reported to be optimal (p.  368).  The ozone C-R function is based on the results
from the four-pollutant model with a 130 df smoother. 

Multipollutant Model (ozone, NO2, PM10, SO2)

In a model with NO2, PM10,and SO2, the estimated coefficient and standard error are based on the
percent increase (5.7) and 95% confidence interval of the percent increase (2.5-8.9) associated with an
increase in daily average ozone levels of 15 ppb (Moolgavkar et al., 1997, Table 4 and p. 366). 

Functional Form: Log-linear
Coefficient: 0.003696
Standard Error: 0.00103
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+ (ICD codes
480-487)
Population: population of ages 65 and older

G .3.7 Hospital Admissions for Pneumonia (Schwartz, 1994b, Detroit)

Schwartz (1994b) examined the relationship between air pollution and hospital admissions for
individuals 65 and older in Detroit, Michigan, from January 1986 to December 1989.  In a two-pollutant
Poisson regression model, Schwartz found both PM10 and ozone significantly linked to pneumonia and
COPD.  The authors state that effect estimates were relatively unchanged compared to the unreported
single pollutant models.  No significant associations were found between either pollutant and asthma
admissions.  The PM10 C-R function for pneumonia incidence is based on results of the “basic” co-
pollutant model (ozone and PM10).140 

Multipollutant Model (ozone and PM10)

The ozone C-R function for pneumonia incidence is based on the coefficient and standard error for the
“basic” co-pollutant model presented in Table 4 (Schwartz, 1994b, p. 651). 

Functional Form: Log-linear
Coefficient: 0.00521
Standard Error: 0.0013
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+ (ICD codes
480-487)
Population: population of ages 65 and older

G .3.8 Hospital Admissions for Pneumonia (Schwartz, 1994a, Minneapolis)

Schwartz (1994a) examined the relationship between air pollution and hospital admissions for
individuals 65 and older in Minneapolis-St. Paul, Minnesota, from January 1986 to December 1989.  In
single-pollutant Poisson regression models, both ozone and PM10 were significantly associated with
pneumonia admissions.  In a two-pollutant model, Schwartz found PM10 significantly related to
pneumonia; ozone was weakly linked to pneumonia.  The results were not sensitive to the methods used
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to control for seasonal patterns and weather.  The ozone C-R function is based on the results of the two-
pollutant model (PM10 and ozone) with spline smoothing for temporal patterns and weather.

Multipollutant Model (ozone and PM10)

In a model with PM10 and spline functions to adjust for time and weather, the coefficient and standard
error are based on the relative risk (1.22) and 95% confidence interval (1.02, 1.47) for a 50 ppb increase
in daily average ozone levels (Schwartz, 1994a, Table 4).

Functional Form: Log-linear
Coefficient: 0.003977
Standard Error: 0.001865
Incidence Rate: region-specific daily hospital admission rate for pneumonia per person 65+ (ICD codes
480-487)
Population: population of ages 65 and older
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Exhibit G-4.  Concentration-Response (C-R) Functions for Ozone and Emergency Room Visits

Endpoint Name Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1

Functional
Form Beta Std Error

Asthma Cody et al. 1992 New Jersey (Northern) All All All SO2 5-hr avg Linear 0.0203 0.00717

Asthma Stieb et al. 1996 New Brunswick, CAN All All All None 1-hr max Quadratic 0.00004 0.00002

Asthma Weisel et al. 1995 New Jersey (Northern and
Central) All All All None 5-hr avg Linear 0.0443 0.00723

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.



141    The population estimate is based on the 1990 population for the eight counties containing hospitals or in the central core of the
study.  Cody et al. (1992, Figure 1) presented a map of the study area; the counties are: Bergen, Essex, Hudson, Middlesex, Morris,
Passaic, Somerset, and Union.
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G .4 Emergency Room Visits

Exhibit 4 summarizes the C-R functions used to estimate the relationship between ozone and
emergency room visits.  Detailed summaries of each of the studies used to generate the functions are
described below, along with the parameters used in each of the functions.

G .4.1 Emergency Room Visits for Asthma (Cody et al., 1992, Northern NJ)

Cody et al. (1992) examined the relationship between ER visits and air pollution for persons of all
ages in central and northern New Jersey, from May to August in 1988-1989.  In a two pollutant multiple
linear regression model, ozone was linked to asthma visits, and no effect was seen for SO2.  They
modeled PM10 in separate analysis because of limited (every sixth day) sampling.  No significant effect
was seen for PM10.  The C-R function for ozone is based on results of a co-pollutant model with SO2
(Cody et al., 1992, Table 6, p. 191).  

Multipollutant Model (ozone and SO2)

The ozone coefficient and standard error are reported per 1 ppm increment of five-hour ozone levels,
which are converted to a 1 ppb increment by dividing by 1,000 (Cody et al., 1992, Table 6, p. 191).  

Functional Form: Linear
Coefficient: 0.0203
Standard Error: 0.00717
Baseline Population: baseline population of Northern New Jersey141 = 4,436,976
Population: population of all ages

G .4.2 Emergency Room Visits for Asthma (Stieb et al., 1996, New Brunswick)

Stieb et al. (1996) examined the relationship between ER visits and air pollution for persons of all ages
in St. John, New Brunswick, Canada, from May through September in 1984-1992.  Ozone was
significantly linked to ER visits, especially when ozone levels exceeded 75 ppb.  The authors reported
results from a linear model, quadratic model, and linear-quadratic model using daily average and 1-hour
maximum ozone.  In the linear model, ozone was borderline significant.  In the quadratic and linear-
quadratic models, ozone was highly significant.  This is consistent with the author’s conclusion that “only
ozone appeared to have a nonlinear relationship with visit rates” (p. 1356) and that “quadratic, linear-
quadratic, and indicator models consistently fit the data better than the linear model ...” (p. 1358).  The
linear term in the linear-quadratic model is negative, implying that at low ozone levels, increases in ozone
are associated with decreases in risk.  Since this does not seem biologically plausible, the ozone C-R
function described here is based on the results of the quadratic regression model presented in Table 2
(Stieb et al., 1996, p. 1356), for a change in one-hour maximum ozone levels.  

Single Pollutant Model
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The coefficient and standard error of the quadratic model are reported in Table 2 (Stieb et al., 1996, p.
1356) for a 1 ppb increase in 1-hour daily maximum ozone levels.  The C-R function to estimate avoided
emergency visits derived from a quadratic regression model is shown below:

Functional Form: Quadratic
Coefficient: 0.00004
Standard Error: 0.00002
Baseline Population: baseline population of St. John, New Brunswick (Stieb et al., 1996, p. 1354) =
125,000
Population: population of all ages

G .4.3 Emergency Room Visits for Asthma (Weisel et al., 1995, Northern NJ)

Weisel et al. (1995) examined the relationship between ER visits and air pollution for persons of all
ages in central and northern New Jersey, from May to August in 1986-1990.  A significant relationship
was reported for ozone.  The C-R function is based on the results of the single pollutant models reported
by Weisel et al. (1995, Table 2).

Single Pollutant Model

The coefficient ($) used in the C-R function is a weighted average of the coefficients in Weisel et al.
(1995, Table 2) using the inverse of the variance as the weight:

The standard error of the coefficient (F$) is calculated as follows, assuming that the estimated year-
specific coefficients are independent:

This eventually reduces down to:



142    The population estimate is based on the 1990 population for the eight counties containing hospitals or in the central core of the
study.  Cody et al. (1992, Figure 1) presented a map of the study area; the counties are: Bergen, Essex, Hudson, Middlesex, Morris,
Passaic, Somerset, and Union.
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σ γ σ γβ β
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Functional Form: Linear
Coefficient: 0.0443
Standard Error: 0.00723
Baseline Population: baseline population of Northern New Jersey142 = 4,436,976
Population: population of all ages
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Exhibit G-5.  Concentration-Response (C-R) Functions for Ozone and Acute Effects

Endpoint Name Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1

Functional
Form Beta Std Error

Any of 19 Respiratory
Symptoms Krupnick 1990 Los Angeles, CA 18-64 All All COH 1-hr max Linear 0.000137 0.000070

Minor Restricted Activity
Days Ostro and Rothschild 1989 nationwide 18-64 All All PM2.5 24-hr avg Log-linear 0.0022 0.000658

School Loss Days, All Cause Chen et al. 2000 Washoe Co, NV 6-11 All All CO, PM10 1-hr max Linear 0.013247 0.004985

School Loss Days, All Cause Gilliland et al. 2001 Southern California 9-10 All All None 8-hr avg Log-linear 0.00755 0.004527

Worker Productivity Crocker and Horst 1981 nationwide 18-64 All All None 24-hr avg Linear 0.14 –

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.



143  Krupnick et al. (1990) used parts per hundred million (pphm) to measure ozone; the coefficient used here is based on ppb.

144  Krupnick and Kopp (1988, p. 2-24) and ESEERCO (1994, p. V-32) used the same C-R functional form as that used here.

145  The coefficient estimates are based on the sample of “adults,” and assumes that individuals 18 and older were considered adult. 
According to Krupnick et al. (1990, Table 1), about 0.6 percent of the study sample was over the age of 60.  This is a relatively small
fraction, so it is further assumed that the results do not apply to individuals 65 years of age and older.
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G .5 Acute Morbidity

Exhibit 5 summarizes the C-R functions used to estimate the relationship between ozone and acute
morbidity.  Detailed summaries of each of the studies used to generate the functions are described below,
along with the parameters used in each of the functions.

G .5.1 Any of 19 Respiratory Symptoms: Krupnick (1990)

Krupnick et al. (1990) estimated the impact of air pollution on the incidence of any of 19 respiratory
symptoms or conditions in 570 adults and 756 children living in three communities in Los Angeles,
California from September 1978 to March 1979.  Krupnick et al. (1990) listed 13 specific “symptoms or
conditions”: head cold, chest cold, sinus trouble, croup, cough with phlegm, sore throat, asthma, hay
fever, doctor-diagnosed ear infection, flu, pneumonia, bronchitis, and bronchiolitis.  The other six
symptoms or conditions are not specified.

In their analysis, they included coefficient of haze (COH, a measure of particulate matter
concentrations), ozone, NO2, and SO2, and they used a logistic regression model that takes into account
whether a respondent was well or not the previous day.  A key difference between this and the usual
logistic model, is that the model they used includes a lagged value of the dependent variable.  In single-
pollutant models, daily ozone, COH, and SO2 were significantly related to respiratory symptoms in adults. 
Controlling for other pollutants, they found that ozone was still significant.  The results were more
variable for COH and SO2, perhaps due to collinearity.  NO2 had no significant effect.  No effect was seen
in children for any pollutant.  The results from the two-pollutant model with COH and ozone are used to
develop a C-R function.

Multipollutant Model (ozone and coefficient of haze)

The C-R function used to estimate the change in ARD2 associated with a change in daily one-hour
maximum ozone143 is based on Krupnick et al. (1990, p. 12):144

Functional Form: Linear
Coefficient: first derivative of the stationary probability = 0.000137
Standard Error: 0.0000697
Population: population of ages 18-64 years145

The logistic regression model used by Krupnick et al. (1990) takes into account whether a respondent
was well or not the previous day.  Following Krupnick et al. (p. 12), the probability that one is sick is on a
given day is:



146  The model without NO2 (Krupnick et al., 1990, Table V equation 3) was used in this analysis, but the full suite of coefficient
estimates for this model were not reported.  Krupnick et al. (Table IV) reported all of the estimated coefficients for a model of
children and for a model of adults when four pollutants were included (ozone, COH, SO2, and NO2).  However, because of high
collinearity between NO2 and COH, NO2 was dropped from some of the reported analyses (Krupnick et al., p. 10), and the resulting
coefficient estimates changed substantially (see Krupnick et al., Table V).  Both the ozone and COH coefficients dropped by about a
factor of two or more. 

147  The derivative result is reported by Krupnick et al. (1990, p.  12).

Abt Associates Inc. April 2003G-19

( ) ( )[ ]
( )

∂
∂

β
β

probability ARD
O

p p p p

p p

( )
,*2 1 1

13

0 1 1 0

1 0

2=
⋅ − ⋅ ⋅ + −

− +
=

∂
∂
ARD

O
ARD

O
2 2

3 3
≅

∆
∆

⇒ ≅
∆

∆
ARD

O
2

3
β*

∆ ARD ARD ARDafter before2 2 2= − .

probability ARD
p

p p
( )2

1
0

1 0
=

− +

p probability ARD sicknessor not
e

for ii t ARD Xt
= =

−
=− + ⋅ + ⋅−

( | ) , , .2
1

1
0 11 20 1 1β β β

where: 
X = the matrix of explanatory variables
p0 = the probability of sickness on day t, given wellness on day t-1, and 
p1 = the probability of sickness on day t, given sickness on day t-1.  

In other words, the transition probabilities are estimated using a logistic function; the key difference
between this and the usual logistic model, is that the model includes a lagged value of the dependent
variable.

To calculate the impact of ozone (or other pollutants) on the probability of ARD2, it is possible, in
principle, to estimate ARD2 before the change in ozone and after the change:

However the full suite of coefficient estimates are not available.146  Rather than use the full suite of
coefficient values, the impact of ozone on the probability of ARD2 may be approximated by the
derivative of ARD2 with respect to ozone:147

where $ is the reported logistic regression coefficient for ozone. The change in the incidence of ARD2
associated with a given change in ozone is then estimated by:
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This analysis uses transition probabilities obtained from Krupnick et al. as reported by ESEERCO
(1994, p. V-32) for the adult population: p1 = 0.7775 and p0 = 0.0468.  This implies:

The standard error for the coefficient is derived using the reported standard error of the logistic
regression coefficient in Krupnick et al. (1990, Table V):

G .5.2 Minor Restricted Activity Days: Ostro and Rothschild (1989)

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence of minor
restricted activity days (MRADs) and respiratory-related restricted activity days (RRADs) in a national



148   The study population is based on the Health Interview Survey (HIS), conducted by the National Center for Health Statistics.  In
publications from this ongoing survey, non-elderly adult populations are generally reported as ages 18-64.  From the study, it is not
clear if the age range stops at 65 or includes 65 year olds.  We apply the C-R function to individuals ages 18-64 for consistency with
other studies estimating impacts to non-elderly adult populations.

149   The calculation of the MRAD coefficient and its standard error is exactly analogous to the calculation done for the work-loss
days coefficient based on Ostro (1987).
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sample of the adult working population, ages 18 to 65, living in metropolitan areas.148  The annual
national survey results used in this analysis were conducted in 1976-1981.  Controlling for PM2.5, two-
week average ozone had a highly variable association with RRADs and MRADs.  Controlling for ozone,
two-week average PM2.5 was significantly linked to both health endpoints in most years.  The C-R
function for ozone is based on the co-pollutant model with PM2.5.

The study is based on a “convenience” sample of non-elderly individuals.  Applying the C-R function
to this age group is likely a slight underestimate, as it seems likely that elderly are at least as susceptible
to ozone as individuals under 65.  A number of studies have found that hospital admissions for the elderly
are related to ozone exposures (e.g., Schwartz, 1994b; Schwartz, 1995).

Multipollutant Model (ozone and PM2.5)

The coefficient and standard error used in the C-R function are based on a weighted average of the
coefficients in Ostro and Rothschild (1989, Table 4).  The derivation of these estimates is described
below.

Functional Form: Log-linear
Coefficient: 0.00220
Standard Error: 0.000658
Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 (Ostro and
Rothschild, 1989, p. 243)
Population: adult population ages 18 to 64

The coefficient used in the C-R function is a weighted average of the coefficients in Ostro and
Rothschild (1989, Table 4) using the inverse of the variance as the weight:149

The standard error of the coefficient is calculated as follows, assuming that the estimated year-specific
coefficients are independent:



150   Assuming that most children start kindergarten at age 5, the corresponding ages for grades 1 through 6 would be 6 through 11.
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This reduces down to:

G .5.3 School Loss Days, All Cause (Chen et al., 2000)

Chen et al. (2000) studied the association between air pollution and elementary school absenteeism
(grades 1-6)150 in Washoe County, Nevada.  Daily absence data were available for all elementary schools
in the Washoe Country School District.  The authors regressed daily total absence rate on the three air
pollutants, meteorological variables, and indicators for day of the week, month, and holidays.  They
reported statistically significant associations between both ozone and CO and daily total absence rate for
grades one through six.  PM10 was negatively associated with absence rate, after adjustment for ozone,
CO, and meteorological and temporal variables.  The C-R function for ozone is based on the results from
a multiple linear regression model with CO, ozone, and PM10.  

Multipollutant Model (ozone, CO, and PM10)

The coefficient and standard error are presented in Table 3 (Chen et al., 2000, p. 1008) for a unit ppm
increase in the two-week average of daily one-hour maximum ozone concentration.  This is converted to
unit ppb increase by dividing by 1,000.

The reported coefficient represents an absolute increase in absenteeism rate for a unit increase in
ozone.  If we apply this study to other locations, we assume that the same absolute increase will occur for
a unit increase in ozone, regardless of the baseline rate.  If the study location has a particularly high
baseline rate, we may be overestimating decreases in absenteeism nationally, and vice-versa.  As an
example, consider if the baseline absenteeism rate were 10% in the study and 5% nationally.  An absolute
increase in absence rate of 2% associated with a given increase in ozone reflects a relative increase in
absence rate of 20% for the study population.  However, in the national estimate, we would assume the
same absolute increase of 2%, but this would reflect a relative increase in the absenteeism rate of 40%.

An alternative approach is to estimate apply the relative increase in absenteeism rate in the C-R
function by adjusting the results by the ratio of the national absenteeism rate to the study-specific rate.  As
a result, the percent increase in absenteeism rate associated with an increase in ozone is extrapolated
nationally rather than the absolute increase in absenteeism rate.  The incidence derivation section above
describes the data used to estimate national and study-specific absence rates.

In addition to this scaling factor, there are two other scaling factors which are applied to the function. 
A scaling factor of 0.01 is used to convert the beta from a percentage (x 100) per unit increase of ozone to
a proportion per unit increase of ozone.  As a result it can be applied directly to the national population of
school children ages 6 through 11 to estimate the number of absences avoided.  

The final scaling factor adjusts for the number of school days in the ozone season.  In the modeling
program, the function is applied to every day in the ozone season (May 1 - September 30), however, in



151   National school absence rate of 5.5% obtained from the U.S. Department of Education (1996, Table 42-1).  Study-specific
school absence rate of 5.09% obtained from Chen et al. (2000, Table 1). 

152   Ozone is modeled for the 5 months from May 1 through September 30.  We assume that children are in school during weekdays
for all of May, 2 weeks in June, 1 week in August, and all of September.  This corresponds to approximately 2.75 months out of the
5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7). 
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reality, school absences will be avoided only on school days.  We assume that children are in school
during weekdays for all of May, two weeks in June, one week in August, and all of September.  This
corresponds to approximately 2.75 months out of the 5 month season, resulting in an estimate of 39.3% of
days (2.75/5*5/7).  The C-R function parameters are shown below. 

Functional Form: Linear
Coefficient: 0.013247
Standard Error: 0.004985
Population: population of children ages 6-11
Scaling Factor 1: Ratio of national school absence rate to study-specific school absence rate151 = 1.081
Scaling Factor 2: Convert beta in percentage terms to a proportion = 0.01
Scaling Factor 3: Proportion of days that are school days in the ozone season152 = 0.393

G .5.4 School Loss Days, All Cause (Gilliland et al., 2001)

Gilliland et al. (2001) examined the association between air pollution and school absenteeism among
4th grade school children (ages 9-10) in 12 southern Californian communities.  The study was conducted
from January through June 1996.  The authors used school records to collect daily absence data and
parental telephone interviews to identify causes.  They defined illness-related absences as respiratory or
non-respiratory.  A respiratory illness was defined as an illness that included at least one of the following:
runny nose/sneezing, sore throat, cough, earache, wheezing, or asthma attack.  The authors used 15 and
30 day distributed lag models to quantify the association between ozone, PM10, and NO2 and incident
school absences.  Ozone levels were positively associated with all school absence measures and
significantly associated with all illness-related school absences (non-respiratory illness, respiratory
illness, URI and LRI).  Neither PM10 nor NO2 was significantly associated with illness-related school
absences, but PM10 was associated with non-illness related absences.  The C-R function for ozone is based
on the results of the single pollutant model.

Gilliland et al. (2001) defines an incident absence as an absence that followed attendance on the
previous day and the incidence rate as the number of incident absences on a given day over the population
at risk for an absence on a given day (i.e. those children who were not absent on the previous day).  Since
school absences due to air pollution may last longer than one day, an estimate of the average duration of
school absences could be used to calculated the total avoided school loss days from an estimate of
avoided new absences.  A simple ratio of the total absence rate divided by the new absence rate would
provide an estimate of the average duration of school absences, which could be applied to the estimate of
avoided new absences as follows:



153   The proportion of children not absent from school on a given day (5.5%) is based on 1996 data from the U.S. Department of
Education (1996, Table 42-1).

154   Ozone is modeled for the 5 months from May 1 through September 30.  We assume that children are in school during weekdays
for all of May, 2 weeks in June, 1 week in August, and all of September.  This corresponds to approximately 2.75 months out of the
5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7). 
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Since the function is log-linear, the baseline incidence rate (in this case, the rate of new absences) is
multiplied by duration, which reduces to the total school absence rate.  Therefore, the same result would
be obtained by using a single estimate of the total school absence rate in the C-R function.  Using this
approach, we assume that the same relationship observed between pollutant and new school absences in
the study would be observed for total absences on a given day.  As a result, the total school absence rate is
used in the function below.  The derivation of this rate is described in the section on baseline incidence
rate estimation.

Single Pollutant Model

For all absences, the coefficient and standard error are based on a percent increase of 16.3 percent
(95% CI -2.6 percent, 38.9 percent) associated with a 20 ppb increase in 8-hour average ozone
concentration (2001, Table 6, p. 52).  

A scaling factor is used to adjust for the number of school days in the ozone season.  In the modeling
program, the function is applied to every day in the ozone season (May 1 - September 30), however, in
reality, school absences will be avoided only on school days.  We assume that children are in school
during weekdays for all of May, two weeks in June, one week in August, and all of September.  This
corresponds to approximately 2.75 months out of the 5 month season, resulting in an estimate of 39.3% of
days (2.75/5*5/7).

In addition, not all children are at-risk for a new school absence, as defined by the study.  On average,
5.5% of school children are absent from school on a given day (U.S. Department of Education, 1996,
Table 42-1).  Only those who are in school on the previous day are at risk for a new absence (1-0.055 =
94.5%).  As a result, a factor of 94.5% is used in the function to estimate the population of school
children at-risk for a new absence.

Functional Form: Log-linear
Coefficient: 0.007550
Standard Error: 0.004527
Incidence Rate: daily school absence rate = 0.055 (U.S. Department of Education, 1996, Table 42-1)
Population: population of children ages 9-10 not absent from school on a given day153 = 94.5% of
children ages 9-10
Scaling Factor: Proportion of days that are school days in the ozone season154 = 0.393

G .5.5 Worker Productivity: Crocker and Horst (1981)

To monetize benefits associated with increased worker productivity resulting from improved ozone air
quality, we used information reported in Crocker and Horst (1981) and summarized in EPA (1994). 
Crocker and Horst examined the impacts of ozone exposure on the productivity of outdoor citrus workers. 
The study measured productivity impacts as the change in income associated with a change in ozone



155   The relationship estimated by Crocker and Horst between wages and ozone is a log-log relationship.  Therefore the elasticity of
wages with respect to ozone is a constant, equal to the coefficient of the log of ozone in the model.

156   The national median daily income for workers engaged in “farming, forestry, and fishing” from the U.S. Census Bureau (2002,
Table 621, p. 403) is used as a surrogate for outdoor workers engaged in strenuous activity. 

157   The national median daily income for workers engaged in “farming, forestry, and fishing” was obtained from the U.S. Census
Bureau (2002, Table 621, p. 403) and is used as a surrogate for outdoor workers engaged in strenuous activity.  This national median
daily income ($68) is then scaled by the ratio of national median income to county median income to estimate county median daily
income for outdoor workers.
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exposure, given as the elasticity of income with respect to ozone concentration (-0.1427).155  The reported
elasticity translates a ten percent reduction in ozone to a 1.4 percent increase in income.  Given the
national median daily income for outdoor workers engaged in strenuous activity reported by the U.S.
Census Bureau (2002), $68 per day (2000$),156 a ten percent reduction in ozone yields about $0.97 in
increased daily wages.  We adjust the national median daily income estimate to reflect regional variations
in income using a factor based on the ratio of county median household income to national median
household income.  No information was available for quantifying the uncertainty associated with the
central valuation estimate.  Therefore, no uncertainty analysis was conducted for this endpoint.

Single Pollutant Model

The C-R function for estimating changes in worker productivity is shown below:

Functional Form: Linear
Coefficient: 0.1427
Daily Income: median daily income for outdoor workers157

Population: population of adults 18 to 64 employed as farm workers
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Exhibit G-6.  Concentration-Response (C-R) Functions for Ozone and Asthma-Related Effects

Endpoint Name Author Year Location Age Race Gender Other
Pollutants

Averaging
Time1

Functional
Form Beta Std Error

Asthma Exacerbation,
Asthma Attacks

Whittemore and
Korn 1980 Los Angeles, CA All All All TSP 1-hr max Logistic 0.001843 0.000715

1.  The averaging time refers to the metric used in the benefits model.  This may differ slightly from the averaging time used in the study.  Refer to the study summaries below for
more detail on the specific averaging time used in the study.



158   The study used oxidant measurements in ppm (Whittemore and Korn, 1980, p.  688); these have been converted to ozone
measurements in ppb, assuming ozone comprises 90% of oxidants (i.e., 1.11*ozone=oxidant).  It is assumed that the harm of
oxidants is caused by ozone.  The view expressed in the Ozone Staff Paper (U.S. EPA, 1996a, p.164) is consistent with assuming
that ozone is the oxidant of concern at normal ambient concentrations: “Further, among the photochemical oxidants, the acute-
exposure chamber, field, and epidemiological human health data base raises concern only for ozone at levels of photochemical
oxidants commonly reported in ambient air.  Thus,  the staff recommends that ozone remain as the pollutant indicator for protection
of public health from exposure to all photochemical oxidants found in the ambient air.” 

159   Based on an analysis of the 1999 National Health Interview Survey, the daily incidence of wheezing attacks for adult asthmatics
is estimated to be 0.0550. In the same survey, wheezing attacks for children were examined, however, the number of wheezing
attacks per year were censored at 12 (compared to censoring at 95 for adults).  Due to the potential for underestimation of the
number of children’s wheezing attacks, we used the adult rate for all individuals.    
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G .6 Asthma-Related Effects

Exhibit 6 summarizes the C-R functions used to estimate the relationship between ozone and asthma-
related effects.  Detailed summaries of each of the studies used to generate the functions are described
below, along with the parameters used in each of the functions.

G .6.1 Asthma Attacks (Whittemore and Korn, 1980)

Whittemore and Korn (1980) examined the relationship between air pollution and asthma attacks in a
survey of 443 children and adults, living in six communities in southern California during three 34-week
periods in 1972-1975.  The analysis focused on TSP and oxidants (Ox).  Respirable PM, NO2, SO2 were
highly correlated with TSP and excluded from the analysis. In a two pollutant model, daily levels of both
TSP and oxidants were significantly related to reported asthma attacks.  The results from this model were
used, and the oxidant result was adjusted so it may be used with ozone data.

Multipollutant Model (ozone and PM10)

The daily one-hour ozone coefficient is based on an oxidant coefficient (1.66) estimated from data
expressed in ppm.  The coefficient is converted to ppb by dividing by 1,000 and to ozone by multiplying
by 1.11.158  The standard error is calculated from the two-tailed p-value (<0.01) reported by Whittemore
and Korn (1980, Table 5), which implies a t-value of at least 2.576 (assuming a large number of degrees
of freedom).

Functional Form: Logistic
Coefficient: 0.001843
Standard Error: 0.000715
Incidence Rate: daily incidence of asthma attacks = 0.0550159 
Population: population of asthmatics of all ages = 3.86% of the population of all ages (American Lung
Association, 2002c, Table 7)
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Appendix H:  Pooling

This Appendix presents a discussion part of which has been published previously (Abt Associates Inc.,
1996a; Abt Associates Inc., 1996b).  It is repeated here to provide a complete documentation of all the
issues involved in the derivation of C-R functions used in benefits analysis.

Many studies have attempted to determine the influence of particulate matter and/or ozone pollution
on human health.  Usually this involves estimation of a parameter $ in a concentration-response function. 
Each study provides an estimate of $, along with a measure of the uncertainty of the estimate.  Because
uncertainty decreases as sample size increases, combining data sets is expected to yield more reliable
estimates of $.  Combining data from several comparable studies in order to analyze them together is
often referred to as meta-analysis.

For a number of reasons, including data confidentiality, it is often impractical or impossible  to
combine the original data sets.  Combining the results of studies in order to produce better estimates of $ 
provides a second-best but still valuable way to synthesize information (DerSimonian and Laird, 1986). 
This is referred to as pooling results in this report.  Pooling $’s requires that all of the studies contributing
estimates of $ use the same functional form for the concentration-response function.  That is, the $’s must
be measuring the same thing.

It is also possible to pool the study-specific estimates of incidence change derived from the C-R
functions, instead of pooling the underlying $’s themselves.  For a variety of reasons, this is often
possible when it is not feasible to pool the underlying $’s.  For example, if one study is log-linear and
another is linear, we could not pool the $’s because they are not different estimates of a coefficient in the
same C-R function, but are instead estimates of coefficients in different C-R functions.  We can, however,
calculate the incidence change predicted by each C-R function (for a given change in pollutant
concentration and, for the log-linear function, a given baseline incidence rate), and pool these incidence
changes.  

Whether we are pooling the $’s in the C-R functions, the incidence changes predicted by the C-R
functions, or the monetary values of the incidence changes, a key component of the pooling process is the
determination of the weight given to each study.  Below we discuss possible weighting schemes, with
particular emphasis on the fixed effects/random effects models, used in the current analysis.  The
discussion is first presented in terms of pooling the $’s, because that most closely matches the discussion
of the method for pooling study results as it was originally presented by DerSimonian and Laird (1986). 
We then give a brief overview of the analogous weighting process if study-specific incidence changes are
being pooled rather than $’s.  The discussion refers to PM for ease of exposition.  It is applicable to any
pollutant, however.

H.1 Background Considerations: Underlying Assumptions

It is possible that the concentration-response relationship between PM and an adverse health effect is
the same everywhere.  If this is the case, different estimates of $ reported by different epidemiological
studies are all estimates of the same underlying parameter and differ from each other only because of
sampling error.  A more general and a more plausible model, however, is that there is not just a single
concentration-response relationship between PM and the health effect, but that this relationship varies
from one location to another, depending on such factors as the composition of the PM and the
composition of the exposed population. 
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If there is an underlying distribution of $’s, then differences in reported estimates of $ among studies
carried out on a single population in a single location (using identical averaging times, methodology, etc.)
would reflect only sampling error, because all such studies are estimating the same $.  Differences in
reported estimates among studies carried out on different populations in different locations, however, may
also reflect differences in the $’s being estimated.  There are, then, two potential sources of variability
among concentration-response estimates:

(1) within-location variability, or sampling error (so that even two studies estimating the same $ in the
same location are likely to report different estimates), and 

(2) between-location variability derived from the fact that studies may be estimating different
underlying parameter values in different locations, 

and associated with these two sources of variability is uncertainty about the correct concentration-
response function for a given location.  The basic model assumption – that there is a single $ in all
locations versus a distribution of $’s across locations – underlies the difference between the fixed and
random effects models, discussed below.  

H.2 Alternative Methods to Pool Estimates of $

One method of pooling study results is simply averaging all reported $’s.  This has the advantage of
simplicity, but the disadvantage of not taking into account the uncertainty of each of the estimates. 
Estimates with great uncertainty surrounding them are given the same weight as  estimates with very little
uncertainty.

For example, consider the three studies whose results are presented in Exhibit H-1.

Exhibit H-1.  Three Sample Studies

Study Estimate of $ Standard Deviation Variance

Study 1 0.75 0.35 0.1225

Study 2 1.25 0.05 0.0025

Study 3 1.00 0.10 0.0100

The average of the three estimates is 1.0.  However, the study 2 estimate has much less uncertainty
associated with it (variance = 0.0025) than either the study 1 or study 3 estimates.  It seems reasonable
that a pooled estimate which combines the estimates from all three studies  should therefore give more
weight to the estimate from the second study than to the estimates from the first and third studies.

H.2.1 Inverse Variance Weighting

A common method for weighting estimates involves  using their variances.  Variance takes into
account both the consistency of data and the sample size used to obtain the estimate, two key factors that
influence the reliability of results.  The exact way in which variances are used to weight the estimates
from different studies in a pooled estimate depends on the underlying model assumed.
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H.2.2 Fixed Effects Model

The fixed effects model assumes that there is a single true concentration-response relationship and
therefore a single true value for the  parameter $.  Differences among $’s reported by different studies are
therefore simply the result of sampling error.  That is, each reported $ is an estimate of the same
underlying parameter.  The certainty of an estimate is reflected in its variance (the larger the variance, the
less certain the estimate).  Pooling that assumes a fixed effects model therefore weights each estimate
under consideration in proportion to the inverse of its variance.

Suppose there are n studies, with the ith study providing an estimate $i with variance vi  (I = 1, ..., n). 
Let

denote the sum of the inverse variances.  Then the weight, wi , given to the ith estimate, $i , is

This means that estimates with small variances (i.e., estimates with relatively little uncertainty
surrounding them) receive large weights, and those with large variances receive small weights.

The estimate produced by pooling based on a fixed effects model, then, is just a weighted average of
the estimates from the studies being considered, with the weights as defined above.  That is,
 

The variance associated with this pooled estimate is the inverse of the sum of the inverse variances:

Exhibit H-2 shows the relevant calculations for this pooling for the three sample studies summarized in
Exhibit H-1.

Exhibit H-2.  Fixed Effects Model Calculations

Study $i vi 1/vi wi wi*$i

1 0.75 0.1225 8.16 0.016 0.012

2 1.25 0.0025 400 0.787 0.984

3 1.00 0.0100 100 0.197 0.197

Sum 3 = 508.16 3 = 1.000 3 = 1.193
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The sum of weighted contributions in the last column is the pooled estimate of $ based on the fixed
effects model.  This estimate (1.193) is considerably closer to the estimate from study 2 (1.25) than is the
estimate (1.0) that simply averages the study estimates.  This reflects the fact that the estimate from study
2 has a much smaller variance than the estimates from the other two studies and is therefore more heavily
weighted in the pooling.  

The variance of the pooled estimate, vfe, is the inverse of the sum of the variances, or 0.00197.  (The
sums of the $i and vi  are not shown, since they are of no importance.  The sum of the 1/vi is S, used to
calculate the weights.  The sum of the weights, wi , I=1, ..., n, is 1.0, as expected.)

H.2.3 Random Effects Model

An alternative to the fixed effects model is the random effects model, which allows the possibility that
the estimates $i from the different studies may in fact be estimates of different parameters, rather than just
different estimates of a single underlying parameter.  In studies of the effects of PM10 on mortality, for
example, if the composition of PM10 varies among study locations the underlying relationship between
mortality and PM10 may be different from one study location to another.  For example, fine particles make
up a greater fraction of PM10 in Philadelphia than in El Paso.  If fine particles are disproportionately
responsible for mortality relative to coarse particles, then one would expect the true value of $ in
Philadelphia to be greater than the true value of $ in El Paso.  This would violate the assumption of the
fixed effects model.

The following procedure can test whether it is appropriate to base the pooling on the random effects
model (vs. the fixed effects model):

A test statistic, Qw , the weighted sum of squared differences of the separate study estimates from the
pooled estimate based on the fixed effects model, is calculated as:

Under the null hypothesis that there is a single underlying parameter, $, of which all the $i ’s are
estimates, Qw  has a chi-squared distribution with n-1 degrees of freedom.  (Recall that n is the number of
studies in the meta-analysis.)  If Qw  is greater than the critical value corresponding to the desired
confidence level, the null hypothesis is rejected.  That is, in this case the evidence does not support the
fixed effects model, and the random effects model is assumed, allowing the possibility that each study is
estimating a different $.

The weights used in a pooling based on the random effects model must take into account not only the
within-study variances (used in a meta-analysis based on the fixed effects model) but the between-study
variance as well.  These weights are calculated as follows:

Using Qw , the between-study variance, 02, is:
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It can be shown that the denominator is always positive.  Therefore, if the numerator is negative (i.e.,
if Qw < n-1), then 02 is a negative number, and it is not possible to calculate a random effects estimate.  In
this case, however, the small value of Qw would presumably have led to accepting the null hypothesis
described above, and the meta-analysis would be based on the fixed effects model.  The remaining
discussion therefore assumes that 02 is positive.  

Given a value for 02 , the random effects estimate is calculated in almost the same way as the fixed
effects estimate.  However, the weights now incorporate both the within-study variance (vi) and the
between-study variance ( 02).  Whereas the weights implied by the fixed effects model used only vi, the
within-study variance, the weights implied by the random effects model use vi +02.  

Let vi* = vi +02.  Then

and 

The estimate produced by pooling based on the random effects model, then, is just a weighted average
of the estimates from the studies being considered, with the weights as defined above.  That is, 

The variance associated with this random effects pooled estimate is, as it was for the fixed effects
pooled estimate, the inverse of the sum of the inverse variances:

The weighting scheme used in a pooling based on the random effects model is basically the same as
that used if a fixed effects model is assumed, but the variances used in the calculations are different.  This
is because a fixed effects model assumes that the variability among the estimates from different studies is
due only to sampling error (i.e., each study is thought of as representing just another sample from the
same underlying population), while the random effects model assumes that there is not only sampling
error associated with each study, but that there is also between-study variability -- each study is estimating
a different underlying $.  Therefore, the sum of the within-study variance and the between-study variance
yields an overall variance estimate.

H.2.4 Fixed Effects and Random Effects Weighting to Pool Study-Specific Incidence Changes

Weights can be derived for pooling incidence changes predicted by different studies, using either the
fixed effects or the random effects model, in a way that is analogous to the derivation of weights for
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pooling the $’s in the C-R functions.  For a given change in pollutant level and a given baseline incidence
rate, corresponding to every possible value of $, there is an incidence change.  Corresponding to $i, with
variance vi (calculated from the reported standard error of $i,) from the ith study, there is therefore an
estimate of incidence change, Ii, with variance v(I)i.  In practice, we generate a sample mean and a sample
variance of incidence changes by calculating an incidence change for each of many $’s pulled from the
distribution of $’s for the study.

This can be done either using Monte Carlo methods (making many random pulls) or by a Latin
Hypercube approach, in which we pull the nth percentile $ from the distribution of $’s, for, e.g., n = 2.5,
7.5, ..., 97.5.  Either way, the result is a corresponding sample distribution of incidence changes that
would be predicted by the study, from which we calculate the sample mean and the sample variance.  The
sample means of incidence change from the studies to be pooled are used in exactly the same way as the
reported $’s are used in the discussion of fixed effects and random effects models above.  The sample
variances of incidence change are used in the same way as the variances of the $’s.  The formulas above
for calculating fixed effects weights, for testing the fixed effects hypothesis, and for calculating random
effects weights can all be used by substituting the sample mean incidence change for the ith study for $i
and the sample variance of incidence change for the ith study for vi.    


